g

.
oo,
"
'

ovmepa
o)
Q.
o~
o
)
-
o))
=
)
r
-
=
a
%
s
3
o
=
5
. P
;7

o B8R A

"'(v gi’ “‘?* i"g:
{ £ “;gi.v 3
: s 5 s 2
Y 5 ba B

Y

SRR S
L ot ¢
bt
s
SRR

LR B v‘;}};ﬂ Eﬁ:ﬂ s
”g sk Report No. 4038
RS g
SRR ARPANET Routing Algorithm improvements
it . Third Semiannual Technical Report
2 i E.C. Rosen, J.G. Herman, |. Richer, and J.M. McQuillan

5o .

| March 1979

i Prepared for:

- Defense Advanced Research Projects Agency

- and

Defense Comrnunications Agensy
% r N
&

Johatnkiey

]
ol

gesenatt

}

o

STIIGL T AT BSOS WA T T et TR e S, LY b eI e v e

-)
TS e T AN R

UNCLASSIED
SRCURITY CL ASSIFICATION OF THIS PAGE (Whon Date Entercd)
. READ INSTRUCTIONS
REPGRT DOCUMENTATION PAGE BEFORE COMPLETING FORM ’ i
1. REFGAT NUMSER 7. GOVY ACCWASION NG| 3. RECIPIENT'S CATALOG NUMBER

4088 Ab-A0%, 34O

————

mur“"‘""""""" $. TYPE OF REPORT & PERIOD COVERED
é A_I\m Routing Algorithm Inn)rovements - 1 Setifarmmual Technical Report
, : 10/1/78 ~ 4/1/79
6. PERFORMING ORG. REPORT NUMBER

4088

8. CONTRACT OR GRANT NUMBER(s)

MDA 3—78-0-;3129 / — ;

E.C./Rosen J.M. /MoQuillan; (*
J. G.[Herman I. [Richer

i

$. PERFORMING ORGANIZATION NAME AKD ADDRESS ELEMENT. PROJECT; -TASK

’-‘ REA 'O UNIT'NUMASERS
Bolt Beranek and Newman Inc. ol) JaAa é A Ova) @ 3:_— 3491 :
50 Moulton Street, Cambridge, MA 02138 I~ ARPAOrdsr No. 3891 -¥ :

11. CONTROLLING OFFICE NAME AND ADDRESS s 3

Defense Advanced Research Projects Agency /1l AprN79

P TR e e S

E——

1400 Wilson Blvd., Arlington, VA 22290 ' 168 ¢ f
T4 MONITORING AGENCY NAME & ADDRESS(I{ different from Comtrolling Office) | 15. SECURITY CLASS. (of this report)
Defense Supply Service - Washington UNCLASSIFIED

Room 1D 245, The Pentagon
Washington, DC 20310

st tit———————————————o———reer——————
16. DISTRIBUTION STATEMENT (of thie Report)

| UNCLASSTED/UNLIMITED J—/
(4|[eeN-49%e / (72 mL
W

Sa. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

. DISTR ERT (1% shatract entered in Block 55 T dilferent

C\\ﬁemmnmﬂ/ Technicad %i !ZQ,-B;

™ suan:usnnnvuons{ -) d’ 7? 1 “ 'A’fy\ ’;q D

o
L— pe—y

19. KEY WORDS (Continue on reverse side if y and identify by block number)

. camputer networks, routing algorithms, ARPANET, line up/down orocedures,
distributed data base buffer management, netuork measuremsnt , network
testing, updating

D,
L)
H

' ZOVHSTRACT (Continue on reverse side it 'y and [dentify by block number)

This report describes progress made during the third six months of a

contract to make several improvements to ARPANET rcuting. During this
period all aspects of the ARPANET's new routing algorithm were implemented
and the new algorithm was run through an extensive series of tests. The
results of these tTests are presented, along with a discussion of cur test
goals, tectimiques, and tools. A full description of the procedures needed
to handle a dynamically changing topological data base 1is also presented.

DD , %, 147; EDITION OF 1 NOV 68 1S OBSOLETE UNCLASSTFIED

SECURITY CLASHFICATION OF THIS PAGE (When Dat 'W

% & 100 \b

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entercd)
T ——

col are presented. Lastly, the procedures used in the ARPANET for
managing buffer space are described.

S 20. contirued - S]
Msasurements on the performance of the ARPANET's new line up/down proto-. f

g N ,

4 M e i~ o -
{i : SECURITY CLASSIFICATION OF THIS PAGE (When Dsts Entered)

P b

|

=

[

P

o

[rer———

. S W

-

BBN Report No. 4088

ARPANET Routing Algorithm Improvements

Third Semiannual Technical Report

April 1979

SPONSORED BY

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY AND
DEFENSE COMMUNICATIONS AGENCY (DOD)
MONITORED BY DSSW UNDER CONTRACT NO. MDA903-78-C-0129

ARPA Order No. 3491

Submitted to:

Director

Defense Advanced Research Projects Agency
1400 Wilson Boulevard

Arlington, VA 22209

Attention: Program Management
and to:

Defense Communications Engineering Center
1860 Wiehle Avenue
Reston, VA 22090

Attention Dr. R.E. Lyons

. yd
| "Accession For /
T30 GoektY
E‘a—‘: ~“¢.3
DU R e 292 D

Ju.tatigation

et rim——e

.

!
i
i -
13
H
i
|
i

LT dgenian/

%.... - —

: ferm 3T Wt 3} - fnAa
L Ner At Codses

favsiland/ox
Digt special

The views and conclusions contained in this document are those
of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the U.S.

Government.

—

P

i

Report No. 4088 _ Bolt Beranek and Newman Inc.,

U
 R—

TABLE OF CONTENTS

PT—

Jar—

INTRODUCTION L] L] . -l L] L] . * L] * L] L] L] L] . L] L] L] L] L] L] L] L d L] iii

1. LINE UP/DOWN MEASUREMENTS . « « ¢ ¢ ¢ ¢ ¢ o o o o o o ¢ o o 1

2. THE SPF TOPOLOGY DATA BASE v v &« & o o ¢ ¢ o« o o« o o« o o« o+ b
2.1 Data Base SEruUCtUre « « ¢ o o o o o o o s « o o o o« « » 8

2.2 Requirements for the Data Base Management Module 10

2.3 Dynamic Treatment of the Data Base 16

2.4 Specification of the Data Base Management Module 24
-
%E} 3- TESTING THE NEW ROUTING SCHEME - GOALS O . . . 27
%_ ;i 4, TESTING THE NEW ROUTING SCHEME -- TECHNIQUES 39

5. TESTING THE NEW ROUTING SCHEME -- TOOLS « « « « . .« 53

6. TESTING THE NEW ROUTING SCHEME --- RESULTS 68

7. BUFFER MANAGEMENT IN THE HONEYWELL 316/516 IMP 97

T.1 Introduction « ¢ ¢ ¢ ¢« o o ot o « o o o o o o o o o o o o 97
7.2 Description of Buffer Counters . « « « « « « o « « « o 101

7.3 Possible Improvements . . . « ¢ « o « o o o« « o o o o 107

APPENDIX 1 SAMPLE TEST OUTPUT . « +« ¢« ¢ « « « o« o« o« « o « « 109

APPENDIX 2 TRAFFIC TESTS 4 & &« ¢ o o o o o o o o o« o o s » o« 137

SoP SIS RIEEIRERANSL S AT T tae T EN S TR SEFSRER D 3 3 SV ARG, M i TR i%‘:i»;;:ﬁ%ﬁ?ﬁﬁg{i}zz&g{ff{:gq-;{ﬁﬁgﬁi“aQﬂ:-Vg‘*_é—:.‘?%;‘.g%‘{;g’,ﬁ“{«Gﬂ?%:\%@g?,ﬁgé;%%%@i@?:%

Report No. 4088 Bolt Beranek and Newman Inc.

APPENDIX 3 INSTABILITY TESTS . . ¢ « ¢ « o o o o o« o « o« + » 145
APPENDIX 4 INSTABILITY/OVERLOAD TESTS « o « « « o 152

APPENDIX 5 MODERATE LOAD TESTS . + & ¢ ¢ 4 ¢ ¢ o« o « o o « « 160

Report No. 4088 Bolt Beranek and Newman Inec.

INTRODUCTION

This report covers work performed during the period from
October 1, 1978 to April 1, 1979 on the contract to study,
design, and implement improvements tc the ARPANET routing

algorithm.

In September 1978, a new line up/down protocol was installed
in the ARPANET. During the past five months we have been
collecting statistics on the performance of the protocol. These
statistics, summarized ia Chapter 1, show that the protocol is

working well.

The design and implementation of the new routing algorithm
in the Honeywell IMPs is now completed. Chapter 2 discusses the

last nart of the algorithm to be designed, the data base

I
Pr——

PR

management procedures. The new routing algorithm requires a data

1

Py}

base which specifies the network's topology. Since the ARPANET

—

topology changes frequently, as IMPs are reconnected or even

mn..
]

reconfigured, it is important for the data base to be modifiable
on a dynamic basis. That is, when a topological change occurs,
the data base should automatically change to reflect the new
topology, without requiring human interventiocon. Chapter 2
discusses the procedures we developed for maintaining the data

base dynamically.

- iii -

Report No. 4088 Bolt Beranek and Newman Inc,

The new algorithm has been installed in most of the network
in parallel with the 0ld algorithm. The 0l1d algorithm is still
used ordinarily for operating the network, but the network 1is
capable of switching over to the new algorithm. During the past .

several months we have run an extensive series of tests in which

the network was operated with the new algorithm, and these tests -
are discussed in Chapters 3-6. Testing a new routing algorithm
is a complex task, which must be approached systematically, and
with a specific set of goals in mind. Our approach to the
testing is discussed in Chapter 3. In order to be able to test
the new algorithm in the ARPANET while minimizing the possibility .
of disrupting network operations, we had to develop a complicated ;
series of testing procedures. These procedures are discussed in

Chapter 4. In Chapter 5 we discuss the software tools which we

developed in order to test the new algorithm.

The results of our testing are presented in Chapter 6 and in

the five appendices. Our main results are:

1) Utilization of resources (line and processor bandwidth)

PRp—

by the new routing algorithm is as expected, and

i
)

FIS——

compares quite favorably with the »1d algorithm, ;

“§ 2) The new algorithm responds quickly and correctly to

topological changes.

e

ppectinie
gireds

i
iR AT

il
RS
{
| S

- iy =

1 R
Enp
W

Beo- PP
e, 2
Joptl Sl AR R
FR il
{
K4
A

)
b
i

ey
-

Report No. 4082 ~ Bolt Beranek and Newman Inc.

3) The new algorithm is capable of detecting congestion,

and will route packets around a congested area.

4) The new algorithm tends to route traffic on min-hop
paths, unless there are special circumstances which make

other paths more attractive.

5) The new algorithm does not show evidence of serious

instability or oscillations due to feedback effects.

6) Routing loops occur only as transients, affecting only
packets which are already in transit at the time when
there is a routing change. The few packets that we have
observed looping have not traversed any node more than

twice. However, the 1loop can be many hops long.

7) Under heavy load, the new algorithm will seek out paths
where there 1is excess bandwidth, in order to try to

deliver as much traffic as possible to the destination.

Of course, the new routing algorithm does not generate optimal
routing -- no single-path algorithm with statistical input data
could do that. It has performed well, however, and we are ready

to cut the network over to the new algoritm permanently.

As a prelude to developing improved congestion control
techniques for the ARPANET, we have been investigating the buffer

management procedures currently implemented in the ARPANET.

T TS TS T
LT e s T

Report No. 4088 . Bolt Beranek and Newman Inec.

These are described in Chapter 7, and some possible improvements

to the procedures are discussed.

[r——

| S——

o v

AT —

)

oo s
LIS —

T m»}

!

1

PRE—

Report No. 4088 Bolt Beranek and Newman Inc.

1. LINE UP/DOWN MEASUREMENTS

During September 1978 the new 1line wup/down protocol
(described in our previous semiannual reports) was installed in
the ARPANET. In addition to providing better performance than
the old protocol, the new protocol provides greater flexibility
since the parameter values can be adjusted over a significant
range. As a result of measurements made both prior to the actual
installation and during the initial operation of the new
protocol, the following parameter values were selected for the
various types o¢f network links. The notation (k,n) signifies
that if the higher numbered IMP -- the master -- misses k
I-Heard-Yous during n successive intervals, then the 1line is

brought down; NUP denotes the number of consecutive I-Heard-Yous

needed to bring a line up:

o
)

L

; “ speed type (k, n) NUP interval

% Li 50 kbps terrestrial,

7 satellite (4,20) 60C 640 ms. (slow tick)
3 {E 230 kbps terrestrial (5,5) 60 128 ms.

9.6 Kbps terrestrial,
satellite (4,20) 60 1280 ms.

! \
[

Measurements of the number of line downs were taker over

approximately a five-month period (147 days) from October 1978

[pR—
PO

through March 1979. Because of the specific implementations cf

the protocol and the measurement package, the number of times the

prnamonsy
| Ppp——

o

p—
L

{

Eommed

= TR T Bt ST 2
R . B e e e SRDLSEHRETL

ks
= &

' I . v " v‘ it
x

Report No. 4088 Bolt Beranek and Newman Inc.

master declares a line down is a more accurate indication of the
number of line failures than the number of times the slave
declares the 1line down. Therefore, except where otherwise
specified below, the number of line downs refers to the number of
times the master IMPs declared lines down. It 1is important to
note, however, that this measurement overestimates the actual
number of line failures because a given line failure may cause
several line down reports, and because other network phenomena
can result in a line being declared down. (A striking example
occurred during a four-week period when IMP 13, GUNTER, had many
power outages; the resulting line downs reported by neighbors of

IMP 13 were excluded from the measurements given below.)

We now discuss the observed performance of the various types
of links. For the 50 kbps terrestrial links, the most common
links in the ARPANET, we observed an overall average interval
between failures on an average line to be 1.8 days. That is, a
"typical" line in the network failed slightly more often than
once everv second day. However, during the first two months of
the five-month measurement period, the average interval was 1.4
days, whereas during the last three nmonths, the average was 2.2
days, a 50% improvement over the first two-month period. Figure
1 shows the weekly measurement data. We do not have an explicit
explanation for this improvement, although it could be the result

of the various topology changes that have been made during the

oo

[R——

-

PrEre—
&t artr

S—

T =. TRATATTOER WERTTRIITTTC -,

Report No. 4088 . Bolt Beranek and Newman Inc.

past six months. During %the most recent three-month period,
three lines (between IMPs 62 and 13, IMPs 62 and 4, and IMPs 59
and 33) accounted for about 138% of the line down reports. On
each of these lines, the average interval between failures was
0.72 days; and for the remaining lines the average interval then
improves to 2.5 days. All the above values were obtained by
dividing the number of lines by the average number of recorded
line downs per day. Since the topology of the ARPANET changes
frequently, the "number of lines" is really an average; also, it
should be noted that Pluribus IMPs were not instrumented to
provide measurement statistics, and reports from test IMPs in
BBN's 1lab were ignored; thus there were typically about

fifty~three 50 kbps lines on which measurements were taken.

The 1line between IMPs 15 and 36 1is the only 50 Kkbps
satellite link, and IMP 36, HAWAII, is a stub. Thus, if there is
a line failure a report cannot be transmitted from the master.
For this line we therefore examined the number of downs reported
by the slave side: over the five-month measurement period the
average interval between failures was 1.3 days, significantly

woirse than for the terrestrial links.

The average failure interval for the 9.6 kbps terrestrial
line between the LONDON and NORSAR IMPs was 0.62 days (15 hours).
As with the HAWAII line, LONDON is the master and is a stub, so

the data is based on reports from the slave.

Report No. 4088 Bolt Beranek and Newman Inc.

3'5{llll]fll[fl'l[jf!lllrrl

h
§ 3.0 —
(72
=
=
o
D 25— AVERAGE OVER _
L e LAST I3 WEEKS
3
< P SN NS
u
=
= 2.0} -
1]
o) —— e o — " o - —— — — —
. |
=4 OVERALL AVERAGE
E s -
-
=2
Ll
(L
<
@ 1.0}~ -
> AVERAGE OVER
< FIRST 8 WEEKS

SN O N RN RO N O T O Y N O T O T O A O O

’ 10/18 n/1s 12/13 110 2/7 3/7

1978 1979 -

MEASUREMENT WEEK

Figure 1-1 Line down data for 50 kbps terrestrial links

i W’WWWWMWWMWWW" [,

M‘ i ja.g\ s '
Bty
i

¥

iyt
k‘:'}' X, & 7,
bt
i
Tttty
E—
]

B
i

i)
}

R
el
(!

i

|

i

h ST E e ot e
L ’ ' I e

- e o -, A AL RIS S AT 2 e TR T s TN T e ST
ot AT e T RSN 6 R e ey W SRy T TRt BT B a}_r T i{gfv_xge;;ggg %j # —33%)&‘% i ‘3}2

Report No. 4088 . Bolt_Beranek and Newman Inc.

No data was obtained on the 9.6 kbps satellite channel
linking NORSAR and SDAC because the master (NORSAR) is a stub,

and SDAC, a Pluribus, does not report line downs.

Finally, for a 230 kbps line, which uses different parameter
values from the lower speed lines, the average interval between
failures was 7.7 days. (There are six high speed lines currently

in the network.)

- o - ST wet e, e R =- - R T R e e :-'""(3"'[' o ’_
IR e — T T st T e RS

g AT A o AT e
nr e T T e R AT SIS L TP
e+ e e 2 AR T AT LT A S s i]
o e g, b A T T i <

. B B

Report No. 4088 . Bolt Beranek and Newman Inc.

2. THE SPF TOPOLOGY DATA BASE

o s s e ST o wamen

The original specification of the data structure for the SPF
routing algorithm assumed a fixed topology data base. No
consideration was given, at first, to the issues of initializing
and maintaining this data base. To test the first few
stand-alone versions of SPF, the network line table and the IMFP

connectivity table were pre-assembled into the program.

This is not sufficient for the final implementation. The
ARPANET topology 1is not fixed. It changes constantly due to
retrunking, as well as the addition, relocation and deletion of
nodes. These activities regularly involve standard sites and
they occur many times a day in the BBN test 1lab. It is clear
that the data base must be capahle of responding to these
changes. To deal with the problems of maintaining dynamic
topology tables, we constructed the data base management module,
which detects and handles messages about 1lines that are not
already part of the data base as well as performing needed

consistency checking. It also implements a mechanism for the

essential garbage collection function.

The following description of the data base management module

will discuss the design choices that were made, as well as

i ¥ < iy
ST L
rh-ulietiiat s e e T R N RN)

é possible alternative approaches. The description starts by %
: g 2 discussing briefly the structure of the data base itself and the
: {
i i
: '
[
Bl -6 = L

e e b T e Ty e

¢

Report No. 4088 ‘ Bolt Beranex and Newman Inc,

messages which are used to uwdate it. The major design choices
for the dynamic treatment of the data base are then examined, and

lastly, we give a full description of the module as currently

implemented.

Mo RPTY Y Ak A g g RO 4o LA HRg T R

121
¥

Report No. 4088 Bolt Beranek and Newman Inc.

2.1 Data Base Structure

The basic element in the data base is a line entry. A 1line
in this context 1is the unidirectional truak between two IMPs.
The reverse direction of a trunk is considered a separate line
entry. Thus each 1line has two end points, one of which can be
uniquely designated as the source and the other as the
destination. Associated with each line entry is the information

needed by the SPF computation, such as the delay over the line.

These 1line entries are grouped into blocks according to
their source IMP numbers, and the blocks are arranged in order of
ascending source IMP number. This is the most 1logical grouping
for the purpose of the kind of searching that is done during
routing processing. It also allows for a more compact
representation of the line entries, since the source IMP number
does not have to be kept for each line entry. Instead, a table,
indexed by source IMP number, is kept that contains indexes into
the table of line entries. The index for each IMP points to the
first entry in +the block of line entries for which that IMP is
the source. The individual line entries contain the destination
IMP number for +the 1line they represent as well as other
information associated with the line. The table of line entries

is called LTB and the table ¢f indexes into it is called NTB.

R
T——

Lo

——"

oy nwnwnlm]
wr i | ‘mmwwm

-
[

4
1

Iumwm

AR ELEY; |

ﬁ‘d [TARevry

Report No. 4088 ‘ _ Bolt Beranek and Newman Inc.

One useful consequence of this structure is that the number
of line entries for a site can be computed by subtracting its
index from that of the IMP number one greater than it. 1In the
original specification of the SPF data structure, this
information was explicitl; carried in a separate connectivity
table. Another feature to notice is that nodes which are not on
the network do not have to take up any room in the LTB table,
since t. 2 NTB table contains the information that a node has no
line entries. The 1indexes for the site not on the network and
the IMP one greater than it will be the same, indicating that the
site has zero lines. Note in particular that the tables may be

initialized by the simple procedure of clearing call indexes to

zero so that all nodes appear to have no lines.

When an IMP is started, the data base is built up gradually
as routing updates are received. In the course of normal
operation, updates can also cause alternations in the structure
of the data base. These updates are generated at each IMP in
response to changing network conditions. They are circulated
throughout the network by the flooding transmission mechanisms
described in Chapter U4 of the second Semiannual Technical Report.
An update message contains the IMP number of the node which
generated it and an entry for every 1line for which the
originating IMP is the source. These line entries afé of the

same format as the ones in the LTB table. As we will see later,

Eat

R Lt e e R R AT T4 L T e S I TR T AT SRS AR YT RO

)

i,
R S = i e S aE e

Report No. 4088 . Bolt Beranek and Newman Inc.

it is an important requirement of the data base management module
that each update from a particular source IMP contain a 1line

entry for each of that IMP's lines.

2.2 Requirements tor the Data Base Management Module

The ©SPF algorithm makes some impiicit assumptions about the
structure and consistency of the topology data base. Insuring é
that the dynamically changing data base conforms to them at all
times has been a major source of complexity in the management 5

module. Some of these assumptions are discussed below.
2.2.17 New line entries must be detected

The module that processes a 1line update assumes that an
entry for that line already exists in the data base. The first
step 1is to compare the current entry against the previously
received one in order to determine if there 1is a change being
reported. If a change is detected, the signed amount otf change ‘
is computed and used to determine which routes should change. It

is possible, however, to receive an update about an entirely new

line that has no entry in the data base. The obvious instance of
this 1is when a site is reconfigured, that is, when the number of
modems at a3 site is decreased or increased. The simple
reconnection of IMPs will also cause new lines to appear. During
a reconnection, the number of modems on an IMP does not change,

. but the neighbors to which its lines are connected change. Since

o

I

- 10 -

-

- - — - S
_ g oL - A i o R e e

e TP YRy e ir - e et B i gy g, g e el
.. . N T {7 ATV XN 2 s P U RN I : T
g e <o AR A P R Sy SRR T e RN 2 BN A T B ST SIS RAR R RN :_39‘f“‘gﬁé‘%ﬁﬁ%ﬁ?ﬁtfﬁﬁéf%;L::}?'ﬁ@» iy = T B S e
£
}«\—*g

Report No. 4088 _ 3w 1t Beranek and Newman Inc.

5]LrB
16| LTB +1
20_1LTB+2

e

1 LTB+3

Y

67 LTB+4

NTB +1
NTB +2
NTB +3
NTB +4

oo e
[X LX)

36 LTB +172
43 |
4 LTB+174

NTB +67 172
NTB +68 175

AN\

DATA BASE TABLE STRUCTURE
NOTE: THERE IS NO IMP @ OR IMP2 ON THE NETWORK

; HEADER ¢

SOURCE iMP

DESTINATION |)
DELAY yed

4

4 £ > 1 TOSLINE ENTRIES

g

DESTINATION
IMP)

UPDATE MESSAGE FORMAT

DELAY

Figure 2-1

- 11 <

NIV RIS SR S ERE SSINGRE AR BT

Report No. 4088 _ Bolt Beranek and Newman Inec. §

a line is defined in our data base by its endpoints, witaout any
reference to the modem numbers involved, connecting an IMP to
another IMP, with which it previously had no connection, will

generate a new line that must be added to the data base. -

It is necessary, therefore, for new entries to be detected
and dealt with in some manner. We have chosen tn create an entry

in the data base for the new line which represents the 1line as e

S R R

having been dezad. This allows the processing module to then

v

handle the new update in the same manner as any other update

i

SRRVl

which reports that a previously dead line has come up. .

s

2.2.2 All line entries must be paired L

In order for the SPF processing module to function properly,
every 1line entry in the data base must have a corresponding }ine
entry describing the reverse direction. For example, if the data
base has an entry in IMP 1's block for a line from IMP 1 to IMP
2, there must be one in IMP 2's block for the line from IMP 2 to -
IMP 1. Since any given update messag2 can only report on one
direction of the line, tais requirement is not necessarily met.
It i3 quite possible for an update with a new 1line entry to %
arrive and for there to be no entry in the data base for the

reverse direction of this line. Obviously, one direction of <he

line must be processed before the other. ;

- 12 = |

Report No. 4088 . Bolt Beranek and Newman Inc,

Rather than rewriting the processing module to tolerate an
unpaired line entry, we decided to check for this condition
tefore processing the line entry. That is, after checking to see
that a particular line entry exists in the data base, we simply
do the same check again with the end points of the line reversed.
If the reverse entry does not exist, it will be treated in the
same manner as 3 new entry and a dead line entry created for it,
insuring that the original line now has 1its ¢twin in the data
base. (It will be =scen 1later, when we discuss garbage
collection, that this requirement that all 1lines be paired
provides further complication of the data base management

routines.)
2.2.3 Detection of implicitly dead lines

1+ is possible for lines to go dead in the network, and
possibly even be removed entirely, without some IMPs receiving
any updates that declare them dead. A network partition during
which some IMP has its neighbors changed provides a situation in
which this can happen. 1Imagine that a segment of the network
containing IMPs 1, 2 and 3 is isolated from the rest of the
network. Duriig the isolation, IMP 1 has one of its 1lines
disconnected from its usual neighbor, IMP 2, and reconnected to a
different one, IMP 3. The IMPs in the isvlated segment first
receive an update declaring IMP 1's line to IMP 2 dead. They

also should receive an wupdate from IMP 2. Later they will

- 13 -

Report No. 4088 Bolt RBeranek and Newman Inc.

receive a new update from IMP 1 announcing its new line to IMP 3.
Meanwhile, the rest of the network IMPs do not receive these
updates because they are partitioned from IMP 1. They still
believe IMP 1 has a live line to IMP 2. When the partition ends
and IMP 1 next sends an update, all the IMPs that could not see
it before will create a new entry for the line from IMP 1 to IMP
3. However, they wiil still believe there is also a line {rom
IMP 1 to IMP 2, and they will receive no update that will tell
them to declare it dead. Similar situations can arise when IMPs

crash and change neighbors before coming up to the network.

It is possible, however, to detect these lines that should
be declared dead. If every IMP follows the rule that it report
on all its live lines in every update, then any entries in the
data base which are not in the latest update message must be for
lines that are now dead. This means that before processing an
update message, the data base management must take each live
entry in its block for the source of the update and search for it
among the entries in the message. If it fails to find a mateh,
it must invoke the SPF computation with an update entry declaring
this 1line dead, thus simulating the effect of an actual update

declaring that line to be down.

In the above example, when the partition is ended and IMP 1
sends its first update, all IMPs will check it¢s contents against

their data bases. Those IMPs which were isolated from IMP 1 will

- 14 -

Report No. 4088 . Bolt Beranek and Newman Inc,

detect that there is no entry in the update with a destination of
IMP 2. They will call SPF with an entry showing the 1line from
IMP 1 to IMP 2 dead and then proceed to process the rest of the

update normally.

Note that with this procedure in effect, routing updates
need never contain entries for lines that have gone down, since
the absence of any entry for a dead line has the same effect as

an entry which explicitly declares the line to be dead.

- 15 =

R Y

SRR AT

Report No. 4083 Bolt Beranek and Newman Inc. i

2.3 Dynamic Treatment of the pata Base
2.3.1 Expanding the data base

In order for the data base to adapt to changing topology, it !

must be possible for it to expand to accept new entries. Since
our table structure requires that a new entry be inserted into
the block for its source IMP, it is necessary to shuffle all the %
blocks above it up one slot and adjust all the appropriate |

indexes. i

Although this is a time-consuming procedure, the only way to i
avoid ever having to expand the data base would be to allocate
the maximum number of line entry slots to each IMP. Allocating
less than this would not allow for the addition of extra lines
at a site or the reassignment of an IMP number to a now site.
Even allocating the maximum number of slots will avoid the need
for dynamically expanding the data base cnly if dead line entries
can be reused for new line entries. As will be seen 1later, the

SPF routine does not guarantee this. More importantly, this

scheme is extremely wasteful of table storage. Since the average
ARPANET connectivity is about 2.5, and the maximum number of
lines at a site is currently 5 on Pluribus IMPs, it would require

twice as many line entry slots as are really needed.

- 16 =

,gmﬁﬁmt&%ﬁmw‘&fnﬁ ABRINM RS rmmmrrs s s -

MR S g e o =S demmmar - =TT T TERTSY ST S e T R T N e S A R R I SR T TR

Report No. 4088 Bolt Beranek and Newman Inc.

2.3.2 Garbage Collection

If the data base is allowed to expand and to zacommodate new
entries, some mechanism must be implemented that garbage collects
dead 1line entries. Otherwise, the steady stream of network
reconfigurations will cause the data base to grow until it
exceeds the space allocated to it and the IMP would have to
restart. The data base will fill up with defunct entries unless

some method of reusing that space is implemented.

Many choices are available in choosing a garbage collection
strategy, but all strategies follow the same basic opei'ation by
reusing the space occuried by dead line entries. However, as
discussed in section 2.2.2, a line must always have its reverse
direction in the data base. This means that a dead line can be
removed from the data base only if its reverse direction entry is
also dead and also removed at the same time. It should be noted
that lines are frequently found to be dead in only one direection
in the data base, If an IMP crashes, the neighbors around it
report their 1lines to it as dead. But no updates are generated
by the dead IMP, so its lines in the data base remzin 1live,
though the SPF computation will not use them since the node is

unreachable. Similar situations arise during network partitions.

It is necessary, therefore; to construct a routine that

segrches for pairs of dead lines and removes them in some fashion

¥
i
E
¢
£
a
1
£
f
H
i
:
1
:
?
i
N

Report No. 4088 . Bolt Beranek and Newman Inc.

from the data base. A choice arises at this point in how to
dispose of the collected entries. The most complicated would be
to compress the data base, completely removing the two entries
which are being reclaimed. This would make space for two more

entries available for use anywhere in the data base.

A second alternative would be to simply mark the entries as
unused and allow new line entries to use them, rather than to
cause expansion of the data base. This does not require the
extra program code to contract the data base, but it also does
not make the reclaimed space generally available., Instead, it
only provides free slots in the same blocks in which the
previously dead entries were situated. If new entries arrive
from other source IMPs, and these source IMPs have no free
eatries in their blocks, it will be necessary to expand the data
base to accommodate these other entries even though there are
already some unused entries. Thus it is possible for the data
base to completeiy f:11 up even though there are many unused
slots in 1ic. If no routine for contracting the tables is
av.ilable, then the IMP will have to restart. This could happen
in instances of major retrunking where ths number of lines at
various sites changes. If only the connections between sites
change, with the number of lines at most sitex staying constant,
then this scheme would be sufficient to keep the data base from

overflowing as long as the garbage collection is done between the

- 18 -

PR

B el e I e i e
RIS

ST TR e AANLY R TP e F R S e S 2, AT SN, A A W e R e Tt L I o s s B S
T Ty I T R I R R R B SO R

i

Report No. 4088 . Bolt Beranek and Newman Inc.

time that the o0ld line goes dead and the time that the new one
appears. This method does have the advantage of avoiding
expanding or contracting the data base, both of which are lengthy

prccesses that lock out the rest of the IMF while they run.

We now come to the question of when to invoke garbage
ecllection procedures. Four possibilities present themselves.
Dead 1line entries can be removed from the data base as soon as
they are processed by SPF. Alternatively, the arrival of new
entries can prompt the search for slots that they can reuse. It
is also reasonable to construct some periodic process that
garbage collects the data base when no routing is being
processed. Lastly, we ¢an wait until the table reaches its
maximum size and then shrink the data base back to its minimum
size. Each of these approaches will be explored and their

advantages and disadvantages discussed.

It 1is certainly possible, upon completion of processing an
update that declares that a line has died, to check the 1line's
reverse direction, and if it is also dead, to remove both entries
from the data base. This test would fail in more than half the
cases, since one direction of a line must necessarily be
processed before the other. In some instancesg, 2s shown in
section 2.2.3, the reverse direction of the 1line cannot be
declared dead. The major disadvantage of this approach, though,

is that it would mostly result in unnecessary work. The vast

- 19 -

e 2R TR T AT T e R T TR T S R T D R T R R i e s
% i R N S S I e e

Report No. 4088 Bolt Beranek and Newman Inc.

majority of cases where a line goes dead involve no retrunking.

L S Rz \ Lk o A
i

The dead line will reappear as soon as it comes back up, perhaps

in no more than a minute. If the original entries for the line

B

are garbage collected as soon as they are both marked dead, then
the wupdates that later herald the reappearance of the line will
have to be treated as new entries requiring special action. In
other words, the IMP would be spending its time unnecessarily

removing and reinstating the same entries.

A better scheme is to have the arrival of a new entry
prompt a search for a reusable dead one. If such an entry is
found in the block of lines for the socurce of the new entry, it
can immediately be '"usurped", The reverse direction of the
reused entry can either be marked unused or its space compressed
out of the data base. This approach 1is attractive for two
reasons. First, since most new entries result from a
reconnection of sites in the network and not actual
reconfigurations, it is likely that a usurpable entry will be

found for the current update. The previously existing line will

have been declared dead already, in most cases in both
directions. Secondly, this method allows garbage collected
entries to be reused immediately, thus avoiding the costly
compression of the data base at the same time as avoiding the
need to expand the data base for the new entry. However, if this

is the only garbage collection mechanism used, it is still

- 20 -

, B o T e e S

. e i R TR P S A R R B L B I T R R T R TR
- ,_i_-—g_,_ S A AT T T ,_—:.z:rﬂ:;:—f"_ T e T T gt = o T - =

fa

[
]

Report No. 4088 _ Bolt Beranek and Newman Inc.

possible for the data base tc overflow even though there is
unclaimed reusable space in it. Since only the block of entries
where the new entry must be inserted is searched, usurpable
entries in other blocks will not be reclaimed. The suceess of
this approach thus depends on a correlation between new entries

and usurpable ones.

A periodic garbage c¢ollection mechanism 1is yet another
possibility. It would run when there is no routing work to dc
and might search only part of the data base at a time, limiting
the amount of processing done in any one period. The primary
problem with this method focuses on what to do with the entries
that can be removed. As we discussed above, merely marking them
unused does not insure that the data base will not overflow. To
be effective, this method would have to compress the data base as
it removes entries. One pass could be made that identifies and
marks all removable entries, and then a second pass could delete
all marked slots. The problem with this is that every new entry
that arrives will have to expand the data base sco it can be
inserted. This manipulation takes many more instructions than
the job of finding a usurpable entry. The periodic approach has
the further inefficiency of removing 1lines that are only

momentarily dead.

The last approach we have considered does garbage collection

only when the tables overflow. It would function in the sane

- 21 ~

S R R R

EIRBREA G

(A

!

{

i

\
o

ol

\
HAR

A%
AR
} Al

s

‘4 ?w“

=
g‘; I
=

Report No. 4088 . Bolt Beranek and Newman Inc.

vasic manner as the periodic mechanism. There are two advantages
to this method. First; no periodic scheduling mechanism needs to
be constructed. Second, since it will be rarely invoked, most
lines which momentarily die in the network will not be garbage
collected. Its main disadvantage is that when it is invoked, it
must lock out the rest of the IMP while the lengthy compression
is performed. Such a transient may have global network effects.
This scheme als¢ carries the disadvantage of requiring all new

entries to expand the data base,

We have chosen to adopt the method of garbage collecting
when a new entry arrives. The full scheme will be presented in
the next section, but a brief description is given here. When a
new entry arrives we attempt to usurp a dead line for it. If a
usurpable pair is found, the reverse direction 1line is marked
unused, and the forward direction is used for the new entry. If
a usurpable or unused entry is not available, then the data base
is expanded. This scheme is admittedly imperfect, but we feel it
is a reasonable compromise given the present extreme memory
constraints in the Honeywell IMP. It 1is possible with this
scheme to overflow the data base, at which time the IMP will have
no choice but to restart. We feel it is unlikely that this will
occur for two reasons. First, it is believed that most new lines
represent, reconnections and not reconfigurations. This means

that wusurping should work most of the time. Second, we have

- 22 -

1

A ———
EW‘W"

R

R

Report No. 4088 . Bolt Beranek and Newman Inc.

provided some slack entries in the data base to provide for the
relatively rare reconfigurations. Also remember that when an IMP
restarts for any reason such as power failures or after
maintenance, its SPF data base starts out completely compressed.
This should provide for an eventual compression in the data bases
around the network. The degree to which our garbage collection
Scheme keeps the data base from growing will have to be watched
in the first few months that SPF runs in the network. Only real

experience with the network will show if it is sufficient.

- 23 -

Report No. 4088 _ Bolt Beranek and Newman Inc. w}

2.4 Specification of the Data Base Management Module =
2.4.1 Detect lines that have died -

The first step in processing an update message is to 1look ;j
for lines that are not reported. Take each live line in the data
base bleck for the IMP that is the source of the update and try
to find a corresponding entry in the update message. If a match
is found, continue with the next data base entry. If no match
can be made, create a dummy update entry ror the missing line ¢
that shows it to be dead. Call the SPF processing module with
this entry. Upon return, continue searching the current data
base entries. When finished with this procedure, iterate through
the wupdate message entries, calling SPF for each one. When the
entire packet has been completed, it can then be marked processed

and another message started.
2.4.2 Insure that entries exist in the data base

Before the SPF module can begin to process an update entry,
a check must be made te insure that entries exist in the data
base for it and its reverse direction. SPF will make a call to i
the data base management routine, FNDENT, first for the reverse
direction line and then for the line that it is about to process. g

FNDENT returns the index of the line entry currently in the data —

base. Now the SPF computation can proceed sincze it can be sure

that a pair of entries exist in the data base.

PARTa—

-

-2 w

[— - — e emasetecsrn

R e TRy

~ et e c e amagm

THATRA A D TR RIE N RSt F RS TNER T v v T meeen

Report No. 4088 _ Bolt Beranek and Newman Inec.

2.4.3 FNDENT

This routine performs all the manipulations on the data
base. It 1is called to locate an entry for a line, and if one
cannot be found, to create one. As a byproduct, it also performs
garbage collection, It requires two arguments, the source and

the destination IMP numbers for the line it must find.

The first step is to search the source IMP's block for the
appropriate line entry. If such an entry is found, the line
already exists 1in the data base and FNDENT exits. This is the

result in almost all cases.

If the search fails to find an entry, the line must be new.
FYDENT must now create a new entry in the data base or usurp an
old one. It searches the source's entries again, 1looking for
dead lines. If it finds one, it checks the destination number.
If it is zero, this is an unused entry which can be immediately
usurped. It does not have a reverse direction. The new
destination number is written into the entry and FNDENT exits.
If the dead entry has a real IMP number in its destination field,
it must be further checked to see if it can be usurped. A dead
line can be usurped only if its reverse direction is also dead.
If this check succeeds, the dead line and its twin are usurped.
First mark the reverse entry unused by. zeroing 1its destination

number. Then change the destination number of the forward

[RRe—
b e, o

- 25 =

Mnmi]
e

-

e e R B T e S AN R R R R R R S A

Report No. 4088 . Bolt Beranek and Newman Inc. ~

direction entry to the new line's destination. FNDENT <c¢an then
exit. If the reverse direction of the candidate for usurping is
not dead, this entry cannot be touched. The search for dead
entries in the source IMP's block must continue until a useable
entry is found or the end of the block reached. If no usurpable

entries are found, the data base must be expanded.

The data base is expanded by the following algorithm. Save
the index of the first line entry for :the IMP whose number is one
greater than that of the source IMP. Thkis will be the slot where
the new entry will go. Check that there is room for one more -
entry in the data base. If not, restart the IMP immediately. If
there 1is room, lock out the retransmission generation routine
which also uses the data base. Increment by one the indexes for
all IMPs greater than the source IMP. Starting with the last
line entry, move each entry up one slot, making sure to copy all
information associated with the entry, inciuding the SPF tree
flags. Stop when the slot whose index was saved has been copied.
Initialize the new slot tc be dead, not in the trwee, and to have
the destination IMP number of the new line. Unlock the data base -

tables and exit FNDENT.

- 26 -

SRR ENGATEeR

Report No. 4088) Bolt Beranek and Newman Inc.

3. TESTING THE NEW ROUTINC SCHEME -~ GOALS

In a distributed packet switching network, there are many
aspects of the network's design which affect its performance,
None 1is more important, however, than the routing scheme. It is
the routing scheme which has the major responsibility for
ensuring that packets get delivered to their destination in as
timely a manner as possible. If the routing scheme performs
badly, packets may never reach their destinations at all, even if
there 1is a free and clear path to the destination. Packets may
be sent into areas of congestion, even if there is a path around
the congestion. Packets may be sent on a long-delay path, even
if a short-delay path is available. Packets may be routed to
dead lines or dead IMPs. Because of the importance of routing to
the general performance of the network, it is not desirable to
change the routing scheme of an operational network (such as the
ARPANET) without first putting the new routing schems through an
extensive series of tests. This is no simpie matter. Any
routing scheme will have several different modules, each of which
must be tested separately from the others and also jointly with
the others. Measurement tools must be designed and implemented.
Measurement testbeds must be developed. A series of milestones
must be planned, so that the testing can proceed in an orderly
and systematic manner. In this chapter we will discuss the

thinking behind our testing procedures. In the next chapters we

- 27 -

PR L S

' 'y a R Toome ot oow
G U S U

i n mr L e e eIy TS e m e © —INAEAR~ N R adeeer o w1 S T AT n e Rt T RN & arhf w e e LS

S I s et T

Report No. 4088 _ Bolt Beranek and Newman Inc.

will discuss our testing techniques and tools, and will present

some of the results of our testing.

Any distributed, adaptive routing scheme can be thought of
as having five separate components -~ a measurement process, an
updating protocol, a "shortest-path" computation (the quotes are
used becauze the definition of "short" is relative to a metric
which may bear no relation to any intuitive notion of shortness),
a procedure for managing the data base used by the shortest-path
computation, and a procedure for forwarding packets on the basis
of the output of the shortest-path computation. It should be
noted that the term "routing algeorithm" has been avoided here,
because it has been wused ambiguously in the past, sometimes
referring to the entire routing scheme, sometimes referring only
to the shortest-path computation. To prevent confusion, the term
"routing algorithm" will not be used here at all. In order for a
routing scheme to perform well, each ¢ 1its components must
perform well, and in addition they must perform well jointly. 1In
trying to develop a set of testing procedures for the routing
scheme, each component offers a different set of problems;
testing their joint operation offers more problems still. Some
of these problems will be briefly discussed in the following

paragraphs.

- 28 -

B s

B e

W5 o 2 H g

'

FOvE

Jumrasneney

1

IR

&

Eminy

EACLNTIN S e L

Cma emm e e e

e e R T TR S A, e e o g T

T RS B R R R g ez

Report No. 4088 X Bolt Beranek and Newman Inc.

Both the new and the ol1d ARPANET routing schemes are
single~path schemes. That is, the shortest-path computation in
eazh scheme defines one and only one path between any given pair
of IMPs. The forwarding procedure for single-path schemes 1is
ouite simple. The shortest-path computation generatss a table
indexed by destination IMP whose values specify the next
inter-IMP trunk to use for each destination. The actual decision
as to which ¢trunk to forward a packet on is made by a simple
table look-up. Because the new routing scheme uses exactly the
same forwarding procedure as the old, no explicit testing or
evaluation of the forwarding procedure is necessary. However, it
is worth pointing out that other sorts of routing schemes might
require non-trivial forwarding procedures for which extensive
testing would be necessary. Consider, for example, a multi~-path
routing scheme. In such a scheme, the shortest-path computation
would define several paths to a given destination and would
specify what fraction of the traffic to that destination is to
flow over each path. In such a scheme, the decision as to which
trunk to transmit a particular packet on could not be made by a
simple table look-up. Rather, making this decision could require
a computation which might have to be made for every packet. The
effects of having to perform the computation would have to be
carefully considered and tested for. 1In addition, the forwarding
procedure of a multi-path routing scheme could well defeat the

advantages of such a scheme. The shortest-path computation might

- 29 -

e e i et L SR S - . .

i
i
i

Report No. 4088 . Bolt Beranek and Newman Inc.

say to divide the traffic to a given destination over three paths
in the ratio 0.17856, 0.25384, and 0.56760, However, it is
unlikely that a forwarding procedure could effect such a division

of the traffic. If not, then the routing scheme might not -

perform nearly as well as expected, and extensive testing would
be necassary to determine whethar its performance was

satisfactory. However, <ince the forwarding procedure in thne

ARPANET is simple, and remains unchanged, 1i%t shall not be

congidered any further. L

The measu-ement process used in the new routing scheme,
however, is quits different from the measurement process of the -
old routing scheme. It is easy Lo see why any adaptive routing
scheme must include¢ some sort of measurement process. In any
adaptive routing scheme, the output of the shortest-path
computiition is supposed to be sensitive to <che state of the
network. In c¢ther words, state information about the network

must be provided as input to the computation. So there must be

some sort of process which determines, at eny given time, the %

actual values of the state infermation to be input to the
computation at Lhat time. = This process may be dubbed a
measurement process. The measurement process of the old routing

scheme is quite simple. £very so often, an IMP simply notes how

R R

»]
STt e

M
(il
irres
i

many packets are gueued to each of its 1lines a. that instant.

==

These queue length measurements serve as the input to the old

4,
"

2w
H
i i
-

- 30 -

5

hm o mmmae me ah TAR AR LShe STARLLTA NN WRR ST B TRragy s wRASFEL O
T i I P 32 R S

Report No. 4088 _ Bolt Beranek and Newman Inc,

shortest~path computation. The measurement process in the new
routing scheme is much more complex. The average delay per
packet on each network 1line 1is actually computed. (For a
detailed discussion of the measurement process used on the new
routing scheme, the reader 1is referred to our first two
semiannual reports.) In order to test the performance of the new
measurement process in isclation from the other components of the
new routing scheme, we developed the following methodology. We
actually implemented the measurement process in the IMP,
However, the results of the measurement, rather then being input
to a shortest-path computation, were sent to an PDP-10 TENEX
system for inspection and analysis. Our second semiannual report
discusses the results of an extensive series of tests made in
this way. Suffice it to say that the measurement process had
been quite throughly tested in isolation before being combined

with the other components of the routing scheme.

It is important to realize, though, that a measurement
process which performs well in isolation may not perform well
when combined with the other components of the routing scheme.
When the measurement process is run in combination with the other
components, there are feedback effects which are not present when
it is run in isolation. The inputs to the measurement process
are the actual delays of packets flowing over a line. The output

of the measurement process is the average delay per packet in

- 31 =

T > - T T e i S e T

L

e N G R e T MR o e By T e N TS A SIS T T M ST S, S T SR S e Y TR £ § e TR < s 4 e
St i A a"%ﬁiﬂxﬁ%ﬁﬂx‘%ﬁ%&mﬁ&*%ﬁ«fsWw&%%wyzwm%

Report No. 4088 _ Bolt Beranek and Newman Inc.

that line. These average delays are the iduput to the
shortest-path computation, whose cutputs are the inputs to the
fcrwarding process. For a particular matrix of offered traffiec,
the forwarding process determines hiow much ¢traffic flows over

each line, and it is this fact that determines the packet delays

£

= on each line. (The word "determines" is being used here in the

sense of "partially determines™, rather than "wholly
determines.”") So the output of the measurement process at one
time partially determines its inputs at a later time, i.e., there

is a feedback effect. 1In our second semiannual report we present

AR S

some mathematical analysis which shows that under certain

b

o

idealized conditions, these feedback effects can cause an
instability in the routing which c¢ould make the new routing
scheme perform very badly. One of our major testing goals has
been to determine whether any such undesirable feedback effects

exist in the operational environment of the ARFANET.

The measurement process is the part of the routing scheme
which 1is responsible for detecting congestion in the network.
That is, when congestion exists on a particular network line, the
output of the measurement process should be such as to cause
nackets to be girouted arcund that line. It is known that the
measurement process in the old routing scheme could not detect
congestion, and that the old routing would often send packets

into a congested area, thereby making the congestion worse. The

- 32 -

B ATar W sl AT T T ek AR, s a v I e £ g

Report No. 4088 , Bolt Beranek and Newman Inc.

new routing's measurement process has been specifically designed
so as to be able to detect congestion. However, to tell whether
it actually fulfills this design goal, it is necessary to run all
the components of the routing scheme together. One of our
testing goals has been to determine whether the new routing

scheme really is better at avoiding congestion than the old.

Another aspect of the measurement process (for both the new
and the o0ld routing schemes) is the procedure for determining
whether a line is up or down. The up/down status of each line in
the network is a very important input to the shortest-path
computation. As discussed in our previous ¢two semiannual
reports, the 1line up/down protocol has recently been changed in
order to make it provide a more meaningful indication of the
usefulness of the 1line. The way 1in which this part of the
routing scheme has been tested in isolation from the other
components of the routing scheme has been fully described in our
previous reports. It is worth noting that the 1line wup/down
protocol, unlike the other parts of the measurement process, is
not subject to feedback effects. The decision as to whether to
regard a 1line as up or down is made on the basis of the error
rate of special protocol packets which are always sent on the
line periodically. This determination is independent of the rate
of flow of ordinary traffic on the line, so it is independent of

the results of the shortest-path computation, Since the 1line

- 33 =

T e e e

el
i

4

A

T LT AN R S, T AT T T er s o

AR S .
: o Fals et e
i L iR

S

Report No. 4088 Bolt Beranek and Newman Inc.
up/down protocol 1is not subject to feedback effects due to the
other components of the routing scheme, it can be fully tested in
isolation. That is, there is nothing additional to be learned by

testing it in combination with the cther components.

Exactly the reverse is true of the updating protocol. It
can only be given a meaningful test in combination with the other
components of the routing scheme. The updating protocol of the
new routing scheme is not only totally different from the
updating protocol of the old routing scheme; it is different from
any other data transmission scheme found in the ARPANET. The
details of the wupdating protocol and the rationale for its
existence can be found in our previous semiannual reports.
However, in order to formulate our testing goals with respect ¢to
the wupdating protocol, it is worthwhile to discuss briefly the
role that the updating protocol plays within the routing scheme.
Recall that +the input to the shortest-path computation of any
distributed adaptive routing scheme consists of state information
about the lines in the network, which may be called the data base
of the routing scheme. This state information is gathered by a
measurement process, as discussed above. The state of a
particular line can, of course, be directly measured only by the
IMP which transmits over that 1line. This gives rise to the
following problem: How can each node gain access tc the entire

distributed data base? This problem can be solved in two

- 34 -

— A e o T R N NI G Ry

Bt o

ﬁMvWMn!

play

| ol |

Report No. 4088) Bolt Beranek and Newman Inc.

different ways. One way is to distribute the shortest-path
computation itself so that each piece of the computation has
direct access to the part of the data base that it needs. This
is the approach taken by the old routing schene. The
shortest-path computation of the old routing scheme has two sets

of inputs. One input is the locally measured 1line state

information. The other input is the output of the shortest-path
computation at neighboring nodes. This approach requires each
node to send its immediate neighbors the results of its own
shortest-path computation. Point-to-point communication between
a pair of neighboring nodes does not offer much of a protocol
problem, and the updating protocol of the old routing scheme is
very simple. Despite its apparent simplicity, however, there are
serious problems in any attempt to distribute the shortest-path
computation. In the old routing scheme, there is no functional
relation between the routing data base at one time and the output
of the shortest-path computation at that time. That 1is, the
output of the computation depends not only c¢n the state of the
lines around the network, but also on the history of the
computation, and the order in which certain events occur around
the network. It is this fact which gives rise to many of the
problems of the o0ld routing scheme (such as looping and slowness
to react to changes) which we have discussed in detail in

previous reports.

- 35 -

Report No. 4088 . Bolt Beranek and Newman Inc.

In order to ensure that the output of the shortest-path
computation at a given time is a function only of the state of
the routing data base at that time, we decided that the new
routing scheme should not have a distributed computation. This
means we had to take an alternative approach to solving the
problem of the distributed data base. The alternative was to
develop a quick and reliable updating protocol for transmitting
changes in the data base to all nodes in the network. This makes
the entire distributed data base (i.e. the output from each of
the 1local measurement processes) locally available to each IMP,
enabling each IMP to maintain a complete copy of the entire data
base. This permits a purely local shortest-path computation, so
that there is a deterministic relation between the data base and
the result of the computation, thereby avoiding many of the
problems inherent in the old routing scheme. It must be pointed
out, however, that the ability of the new routing scheme to avoid
such problems is dependent on the updating protocol's really
being quick and reliable. (A full discussion of such issues is
presented in our second semiannual report.) OQur wupdating
protocol was specifically designed to ensure quick and reliable
updating under all conceivable network conditions; one of our
major testing goals has been to determine whether the updating
protocol really meets its design goals. The only real means of
determining this is to run the entire routing scheme under

operational conditions, while monitoring the updating protocol to

- 36 -

i i ey

ooy
[4

m vossnt S twornts BN

s s s o Sty SRR AT R SN

v ¥
P, 4

b

(I

—

F—

d

J———
| Sowmm—

[PR—

Ly

_ 5 PR , s 5 .
T TR Spraose et ek aies o Y L e S B e L e X I I T R S R T e T TR S R R R e

Report No. 4088 _ Bolt Beranek and Newman Inc.

see whether it does or does not get the routing updates around
the network in a sufficiently timely and reliable manner. There
is no way to get significant results by testing the updating
protocol in isolation from other components of the routing

scheme,

Another component of the routing scheme which is closely
related to the updating protocol 1is the data base management
procedure (discussed 1in detail in Chapter 2). This is the
procedure that receives the routing updates from the updating
protocol and uses them to build tables which are suitable as
input to the shortest-path computation. The sorts of problems
which the data base management procedure gives rise to are not
very subtle. If the tables are not built correctly, the
shortest-path computation will probably either halt, or else go
into an infinite loop, giving immediate feedback as to the nature
of the problems. Problems with other compcnents of the routing
scheme, however, are more likely to result in poor or incorrect
routing, a condition which is much more difficult to test for
than an infinite 1loop or a halt. The main problem of any
procedure which builds tables from updates is that any arbitrary
combination of wupdates may arrive in any arbitrary order, which
means that the procedure must be completely free of order
dependencies. It is almost impossible for a programmer to debug

such a procedure without testing it out in a fully operational

- 37 =

ook AR TIY D Epem D ST L m e e s vee wTw B T W v tem
S ~ « T TR e s TS e 2 G T AT e T e iy

g A = T I S T e B e, £ P A0 T v T A ST 2 S

S e I L e S T R S R S Y I T A S B R n 3 2 o Stz T et e

< £ STETRERIGYEE RN TR el

o1

Report No. 4088) Bolt Beranek and Newman Inc. i

environment (i.e. in combination with the other components of the

routing scheme), since only in such an environment can one expect

o

to see enough different combinations of events. One of our major
testing goals was to run the new routing scheme under a wide —
enough variety of conditions to be able to gain confidence in the

data base management procedures.

The final component of the routing scheme is the o

shortest-path computation. It may seem odd to discuss this 5;

component last, since most discussions of routing tend to

e omes
[

concentrate primarily (if not‘exclusively) on the shortest-path
computation. Nevertheless, it is the component which is most
amenable to 1isolated testing in the absence o¢f the other
components of the routing scheme. Tﬁe SPF computation has been
extensively tested as a stand-alone program on a TENEX system, as
well as a Honeywell 316 and a Pluribus. These tests, made with
the use of a test deta generator, were carried out even before
any desizn work had been done on the other components of the new
routing schemes. Since then we have run the SPF computations i
many times in combination with the other components of the new

routing scheme. In all that testing, no problem with the SPF

computation has ever been discovered. Apparently, all problems H

were discovered in the isolated testing.

ot

- 38 -

—

L

e
P

v

I

o
I

-

J—
RN

o

Report No. 4088] Bolt Beranek and Newman Inc.

4, TESTING THE NEW ROUTING SCHEME -- TECHNIQUES

In the previous section, we emphasized the need for testing
the new routing scheme in the operational environment of the
ARPANET. However, testing new software in a distributed network
is a complicated procedure, involving different problems than,
say, testing a new operating system for a single computer. To
test an operating system in a computer which supports a user
community, it is necessary to schedule some down-time, during
which users are prevented from accessing the computer. The new
operating system is loaded and put through a series of tests. If
it halts, or goes into an infinite loop, the operator can regain
control of the computer from the console. At the end of the
testing period it is a simple matter to reload the old system.
Testing new software in the ARPANET, however, is nowhere near so
simple. For one thing, we are not allowed to schedule
"down-time" in the ARPANET. We were able to schedule software
testing periods durirg the early morning hours. During these
periods we were permitted to disrupt the network, in the sense of
letting the network run in a less reliable manner than usual.
But we were requested to keep the network accessible to users as
much as possible. For another thing, most of the ARPANET's IMPs
run unattended. Should an IMP halt, or go into an infinite 1loop,
there is no operator present tc regain control. To be sure, the

Network Control Center (NCC) at BBN has an extensive set of

R S A IR T TS T R s TENREEES
Tenuat s o aAgl RS sk SRS i

v, wé::s_

Report No. 4088 _ Bolt Beranek and Newman Inc.

facilities for controlling unaf.tended IMPs at remote sites.
However, these facilities all make use of the network itself. An

IMP which has halted, or which is running in a tight loop, will

not respond to commands from the NCC; such IMPs are out of the L

NCC's control. Furthermore, any software problem which causes

: the network as a whole to fail or run in a degraded condition can

cause the network to be non-responsive to the NCC's commands.

Because the ARPANET has been designed for operational robustness,

there are very few problems which can cause the network to fail «

as a whole. Unfortunately, failure of +the routing scheme is é

among these few problems. If the routing scheme fails there may

e

%)
Rk

be no way for cor :cnds to get from the NCC to the IMP, Lastly,

P

loading the entire network with the new routing scheme is a much

more complicated operation than merely loading a single computer

abiaind
ooy

with a new operating system. One cannot simply load the new

&
=
7

routing into the IMPs one by one, until all the IMPs have 1it.
That would mean that during some period of time, some IMPs were
using the new routing scheme while others were using the old; in
general, the network will not run properly unless all IMPs are

using the same routing scheme. Thus even the process of loading i

the new routing scheme into the net can cause problems if it is

not done carefully.

A partial solution to these problems is to do a lot of i

testing in the lab before doing any testing in the field (the

- 40 -

[S o

Report No. 4088 _ Bolt Beranek and Newman Inc.

field being the actual ARPANET). In fact we did do a great deal
of testing in the lab, and we never tried anything ir the ARPANET
without trying it in the lab first. Our lab resources, however,
are not well-suited for the testing of a new routing scheme. The
lab contains only two Honeywell 316s for use in testing IMP
software. This may have been sufficient for testing most of the
changes which have been made over the years to the IMP software,
but it is not sufficient for testing s routing scheme. It should
be obvious that the ability of a routing scheme to run properly
in a two-node network has little bearing on its ability to run in
a large distributed network. Such a trivial network just does
not give rise to the sort of problems which apply stress to a
routing scheme, since the rcuting problem in a two-node network
is completely trivial. Fortunately, we we}e able for a few
months to colleect a total of four Honeywell 316s in our lab.
From the perspective of routing, a four-node network is
significantly more complex than a two-node network, and we were
able to do quite a bit of testing in the 1lab network.
Nevertheless, a four-node network is much simpler than the
ARPANET, and we would not expect, a priori, that the result of
lab testing would be the same as the result of similar tests done
in the field. So we still had to develop techniques for doing
field testing that would minimize the possibility of major
disruptions of the ARPANET due to failure of the new routing

scheme.

- 41 =

a1 T,

Report No. 4088 _ Bolt Beranek and Newman Inc.

One should not get the impression that the NCC is completely
helpless if some major problem does arise during testing of the
routing schene., A small number of operational IMPs are located
on BBN's vpremises, and these <¢an be controlled from their
consoles. There is a procedure known as "demand reload" by which
one IMP can forcibly reload its neighbors, even if the neighbors
are not communicating with the NCC. Thus if any major problems
arise in the testing of the routing scheme, a good release can be
easily 1loaded in BBN's local IMPs, and these IMPs can forcibly
reload their neighbors, one at a time, until all the IMPs in the
network have the good release. In fact, we did have to use this
procedure on two occasions to restore the network to operating
condition aiter problems developed during our testing of the new
rcuting scheme. However, though the procedure is an effective
way of recovering from problems, it is really something that
should be used only as a last resort, not something that should
become a part of our everyday testing procedures. It was
therefore incumbent upon us to develop testing procedures which,
as much as possible, minimized the chances of a major problem

occurring during our tests of the rew routing scheme.

We decided to use a testing procedure similar to the one we
developed for testing the new line up/down protocol. Recall that
in order to test the line up/down protocol, we created an IMP

release that ran both protocols at once, in parallel. However,

- 42 -

R
Yt

S
rmwmwl

I
i
[

prrm—

Report No. 4088 _ Bolt Beranek and Newman Inec.

at any given time, 1in any given IMP, one of the protocols was
running in "controlling mode", and the other was running in
"phantom mode." That 1is, both protocols were always running,
exchanging their own special protocol packets over the line, and
coming independently to a decision as to whether the line should
be declared up or down. The actual operational up/down status of
the line, however, was affected only by the decisions of the
protocol which was running in controlling mode. The decisions of
the protocol running in phantom mode were reported to the NCC for
later analysis, but they had no operational effect on the line's
up/down status. In addition, the NCC had the capability of
switching the protocols from one mode to ancther in order to test

the new protocol undsr a variety of conditions.

We adopted a similar, though more complex, approach to the
testing of the new routing scheme. That is, we prepared an IMP
software release which contained all the code for both routing
schemes. This release has five different routing states, each
corresponding to a particular degree of parallelism. The five

states are the following:

I) In state I, the old routing scheme is in controlling
node, and most of the new routing scheme is deactivated. The
only active component of the new routing scheme is the
measurement process. However, even though the packet delays are

always being measured, routing updates are never generated, so

- 43 -

i

Fe

AP

P /
] i%‘ﬂu’

>

"

A pas

s

1y

m

i
i

———-

2,

RS] S,
”"“”%%%%%W%mw'm

[T

RPN

e ——

S

-

A M, ¥,

o i EE—EETE i e

Paport No. 4088 Bolt Beranek and Newman Inc.

of the other cuomponents of the routing scheme have any work
nct

none
to d¢. ‘This is the state in which the IMPs run when we are

doing any testing.

is similar to state I, except that a little
in the phantom

I1) State 1II

bit more of the new routing scheme is activated

mode. The measurement process causes routing updates to be

generated; and enough of the updating protocol is8 activated to

ensure that all the wupagates are sent to all the IMP's in the

network. Hhowever, the reliable transmission aspects of the

updating protocol are not activated. In this state, the data

base management procedure and the shortest path computation do

not run at all; routing updates crezated by the new routing scheme

are simply discarded, instead of being processed.

I11I) In state III, the old routing scheme .s still run in

routing scheme is fully

-~

the contrelling mode, but the new

activated in the phantom mode. That is, all aspects of the new

routing scheme are operating just as if the old routing scheme

were not there. However, all ordinary user packets are routed as

by the old routing scheme, and the results of the new
of the npetwork.

specified
scheme do not have any effect on ‘he operation

It is possible in this state teo flag certain test traffic so that

it (but not other traffic) is routed according to the new scheme.

- 4y -

i

[T
¥ ooy iomns,

B e !

fputonn

LY

b
¥

e a-“ 1y e am, v

st B

R——

o

ng-MN
Vi v o

i AL A i ot
IR RTINS It s -
b i .

R ERL TN Y o 0 R T ety T T - R S G T o YA T eEn el R gl T a3 R T

Repor¢ No. 4088 Bolt Beranek and Newman Inc.
Iv) In state IV, the new routing scheme runs in the
controlling mode, and the old routing scheme runs in the phantom

mode. All packets are routed according to the new scheme.

V) In state VY, the new routing scheme runs in the
contrclling mode, and the old routing scheme 1is completely

deactivated.

Zach of these states has a greater impact on the network's
cperation than éhe states preceding it. This makes the states
progressively more dangerous, in that problems arising when the
network is running in the later states are likely to have a worse
effect, and to be harder to recover from, than are problems
arising when the network Is ruuning in the earlier states. So we
attempted to do as uuch testing as possible ir the earlier states
before proceeding to the later ones. Each of the states is
useful for some kind of testing, out not for others. (State I,
of course, is nect used for testing at all, but only for normal
network operation.) In state III, it is posszible to test the
updating protocol, the data base manageuent procedure, and the
shortest path computatior to see how they perform together.
However, while the new routing scheme is running in the phantom
mode, there is no feedback between the measurement process and
the shortest~path conmputations, since packets are not routed
according to the new routing schenme. We can generate some

imperfect feedback by sending 1large amounts of special test

R T T R P MR DT e B el RS, o
B R A A T B S A S e DA ey gy

Ruport No. 4088 _ Bolt Beranek and Newman Inc,

traffic, and flagging that traffic so it will be routed according
to the new scheme. If the amount of test traffic is much-greater
than the amount of ordinary traffic, state II1 becomes
indistinguishable from state 1IV. To do a full test of the
routing scheme, though, with all feedback mechanisms engaged, it

is necessary to go to state IV.

State II has no utility in and of itself, but is very useful
when combined with state III. That is, one IMP can be put in
state IIT, while all the rest are in state 1II. The effect of
this is to wuse the network as a test data generator while
performing a state III test in a single IMP. This does not yield
as thorough a test as would be obtained by placing the entire
network in state III; it is particularly useful, though, if one
is afraid that a bug in the new routing code will cause the IMP

to halt or loop under actual network conditions.

There are two major reasons why it is important to test the
new routing scheme in state V. One reason has to do with the
distorting effect the old routing scheme, by its mere presence,
may have on the packet delays in the network. In our first
semiannual report we discussed the spikiness and high variability
of the packet delays under what would appear to be steady-state
conditions. We argued that some of this high variability may be
due to the presence of the old routing scheme. The o0ld routing

scheme periodically causes long routing update packets to Dbe

- 46 -

el

plamasany yrommnl

vt 3

s 4

-

[

Report No. 4088 . Bolt Beranek and Newman Inc,

transmitted over the lines, thereby causing spikes in the queuing
delay seen by packets. Also, the old shortest-path computaticn
runs periodically and takes a large number of processor cycles,
causing spikes 1in the processing delay seen by packets. These
effects are no less present and no less significant when the old
routing scheme is in phantom mode than when it is in controlling
mode. It is possible that when the old routing scheme is fully
deactivated, the characteristics of the packet delays will be
very different. Since the new routing scheme actually measures
the packet delays, any significant change in the characteristics
of the packet delays could have a significant effect on the
performance of the new routing scheme. That is, the new routing
scheme may perform differently when the ¢ld routing scheme is
fully deactivated (state V) then it does when the old routing
scheme is running in the phantom mode (state IV). This makes it

important to test the new routing acheme in state V.

The other reason for testing the new routing scheme in state
V' has to do with the integrity of the IMP program itself.
Removing one routing scheme from the IMP and replacing it with
another 1is not a simple job. The IM® program is a ten-year-old
highly optimized program which has been under continuous
development. It is not implemented according to "structured
programming®; little pieces of the o0ld routing scheme are

scattered around the IMP program. The *task 1is further

- 47 -

g2
TR

e

- - = — [N o

Report No. 4G88 _ Bolt Beranek and Newman Inc.

complicated by the fact that other IMP functions have been
piggybacked on various functions of the old routing scheme. For
example, at one time the old routing updates doubled as the Hello
packet of a line up/down protocols. For another example, at one
time channel acknowledgements were sent periodically in null
packets which were always transmitted immediately after the old
routing updates. Before releasing the new routing scheme,
therefore, it is important to demonstrate that the network can
function with the old routing schems totally deactivated. This

can be demonstrated by testing in state V.

Operating a network which contains two routing schemes gives
rise to a number of problems which we had to solve before we
vould do our testing. The most straightforward problem had to do
with the limited amount of memory in the IMP. When the amount of
code 1in the IMP program increases, it takes up space that would
otherwise be available for packet buffers. In order to run our
tests, we had to add code for the new routing scheme, while
leaving in all the code for the old scheme. We also had to add a
significant amount of code for instrumenting and measuring the
performance of the new scheme. In addition, there 1is a
significant amount of code required to implement the capability
of switching among the five states described above. After adding
all this code, the IMP had only 27 buffers left. We have in the

past run the IMP with as few as 29 buffers without encountering

- 48 -

ey s § o I S TR B SR R AR
e S e 2 P gt

. ot e A e A R s e e T T R T A e
o Ty S 3 BT T S gl
i T -

Report No. 4088) Bolt Beranek and Newman Inc.

any problens; yet when we tried running it with 27 buffers, the
network ran in a degraded fashion, producing long delays and 1low
throughput which was quite noticeable at the user level. We were
able to solve this problem by putting five buffers' worth of new
routing code into a "package", which could be removed from the
network whenever we did not need it for testing purposes. We
still do not totally wunderstand, though, why the difference
between 29 buffers and 27 buffers makes such a big difference to

the network performance.

Other operational problems arise when an attempt is made to
switch between states. Neither routing scheme can be expected to
perform properly unless it is started in a well-defined initial
state. The only way to ensure the proper initialization 1is to
restart the IMP whenever it Is desired to activate a previously
inactive routing scheme. Furthermore, when a routing scheme is
deactivated it may have control of various scarce resources. If
the IMP is to operate properly after a test period ends, the IMP
must force the release of all scarce resources which were in use
by the scheme which has been lately deactivated. Additional
problems arise when we attempt to switch a routing scheme running
in phantom mode to controlling mode. In order for the network to
operate properly, all the network nodes must be under the control
of the same routing scheme. This can be easily shown, as

follows. Let nodes O and N be neighbors, and suppose that in

- 49 -

S

s

Y
3

=

SR

#

Report No. 4088 _ Bolt Beranek and Newman Inc.

node 0, the old routing scheme is in controlling mode, while in
node N, the new routing scheme is in controlling mode. It is
possible that, according to the old routing scheme, the best
route from O to a destination node D is via N, while according to
the new routing scheme, the best route from N to D is via O.
Then packets for D may loop between O and N without ever beins
delivered to their destination. Since the two routing schemes
operate independently, there is no way to detect and break this
loop. Thus tha network cannot be expected to operate properly

unless the same routing scheme is in control of all the nodes.

The problem just described can occur even if the
non-controlling routing scheme is running in the phantom mode,.
An even more serious problem can arise if the non-controlling
scheme is fully deactivated. To¢ see this, suppose the network is
divided into two areas. In one.area (the "old area"), the old
routing scheme controls, and the new routing scheme 1is
deactivated. In the other area (the "new area"), the new routing

scheme controls, and the old is deactivated. Now if an IMP goes

down or comes up in one area, the IMPs in the other area have no

way of detecting that fact, since there is no flow of routing

update information between the two areas. (Note that this would

not be the case 1if the non-controlling routing scheme were
running in the phantom mode.) Then the following situation can

arise. Let O be an IMP in the old area, and let M be an IMP in

-~ 50 -

TR

T e

[Ye—

[P

[R—
1

Lepee———

—/ (T3

/4

i S e L R e R T e A RS © L i i e e e T e RAS

Tnen

Report No. 4088 . Bolt Beranek and Newman Inc.

the new area. Suppose that M was initially down, so that O
believes M to be unreachable. When M comes up, 0O will not be
aware of the fact, and will still believe M to be unreachable.
However, as long as O has a neighbor N which is in the new area,
all the 1IMPs in the new area will believe that O is up. We now
have a situation where M thinks O is up, but O thinks M is down.
Suppose that M tries to establish a connection with 0. It will
send out control packets ‘to O until it receives a reply from O.
But since O thinks M is down, it will never reply to any of M's
control packets. As a result, M will continue sending out
control packets forever, without ever receiving any reply. This
continuous and uncontrolled transmission of control packets can
lead to network -congestion. If routing loops have formed, as
discussed in the previous paragraph, excessive re-transmissicns
of control packets can severely aggravate the problem; making the

congestion much more severe than it would otherwise be.

We see then that when we want to put a non-controlling
routing scheme into controlling mode, it is necessary to restart
all the IMPs simultaneously. Otherwise it 1is impossible to
ensure that the same routing scheme is in control of all the
nodes at any given time. When we began our testing, the NCC did
not have the capability to restart all the IMPs at once (though
it did, of course, have the capability to restart the IMPs one at

a time.) We had to develop such a capability especially for our

- 51 =

R R

Report No. 4088) Bolt Beranek and Newman Inc.

testing. This is just one of several improvements to the NCC

capabilities that we developed as part of the routing contract.

The operational problems we have been discussing are neither
particularly profound nor especially difficult to resolve. We
have discussed them at =such length because of the significant
impact they made on our testing schedule. The technique of
running the two routing schemes in parallel, and of having five
different states (constituting varying degrees of parallelism),
was developed in order to minimize the possibility that our
testing would cause a widespread or long-lasting network
disruption. We Dbelieve that we toosn a sound approach; but we
wish to emphasize that safety comes at a price. Not only was the
network software made more complex, but we had to develop new
capabilities for the NCC and we also had to carefully refine our
operational procedures. Furthermore, the vast majority of
problems we encountered during our testing were operational in
nature. That is, when a major problem did develop during our
testing, it was much more 1likely to be due to a fiaw in our

procedures than to a problem in the new routing scheme.

- 52 =

N T SN .- D T T TeRRERSE IS

Report No. 4088 _ Bolt Beranek and Newman Inc.

5. TESTING THE NEW ROUTING SCHEME -~ TOOLS

In oder to determine how well the new routing scheme was
performing, we had to develop various instrumentation and
measurement tools. In general, we opted to keep our measurement
tools very simple. In our experience, when tools of great
complexity and sophistication are used for measuring network
performance, there 1is great difficulty in interpreting the 4data
generated by their use. It is difficult to be sure that such
tools are doing exactly what they are supposed to be doing, and
it is extremely difficult to get such tools debugged. When one
is attempting to measure a network's performance, one must be
able to have confidence in the measurement tools and procedures,
so that one can be sure that the measurement results really do
represent particular states of the network, and are not simply
artifacts of the tools. This argues for keeping the tools as

simple and easy to understand as possible.

The most obvious means of testing the performance of a
routing scheme is to create various offered traffic loads and
then see how much of the traffiec was routed over the various
alternative paths. To do this we developed a tool known as the
"tagged packet." A tagged packet is just an ordinary packet with
a particular bit set in the host-IMP leader. However, the data
field of a tagged packet is used to carry a trace of the packet's

path through the network; instead of ordinary user data. When a

- 53 -

Report No. 4088 _ Bolt Beranek and Newman Inc. L

tagged packet is first submitted to the network, its data field

does not contain any meaningful information. At each H
intermediate node that the packet passes through on the way to i
its destination, the packet is "tagged" with that node's IMP é
number, and with the delay that the packet experienced 1in g
traveling through that IMP. Thus when the packet arrives at its

destination, it contains a precise record of the path it %

traversed, as well as its delay. The value of delay which

o - ———

appears in the packet tag for a particular node is the same value
which is input to the measurement process at that node. i
(Actually, the delay which appears in the packet tags is not

~ quite so precise as the delay which 1s really input to the ié
measurement process, The 1latter is measured in units of 0.8
milliseconds, but the former is truncated to units of 6.4 ms., so L

that we can fit it into an eight-bit field.) o

Figure 5-1 shows the contents of a typical tagged packet.

This particular packet traveled a very long path, 15 hops, from

IMP 43 to IMP 9. (Note that since the tags are created as the
packet 1is about to be sent on an inter-IMP line, there is no tag
entry for the destination IMP.) The packet did not encounter H

much queueing delay on this path -- it was a long packet, and

19.2 milliseconds is its transmission delay on a 50 kbps 1line.
Only on the lines between 43 and 56, 12 and 47, and 47 and 6 did

it experience a delay larger than its transmission delay. Note

Wﬁ%&%ﬁ“ﬁ? Tt S TR TI ,

PR

) TR R
e e R S
1

- 54 - -

.
Tt
‘

1

s S N O ey e T U bt 3
S s TE T e e R I I e

Report No. 4088 . Bolt Beranek and Newman Inc. .
that the line between 6 and 44 has a speed of 230.4 kbps, so the

delay through IMP 6 is less than 6.4 ms.

MESSAGE 838

IMP: 43 DELAY: 25.6 MS.
IMP: 56 DELAY: 19.2 MS.
IMP: 11 DELAY: 19.2 MS.
IMP: 15 DELAY: 19.2 MS.
IMP: 45 DELAY: 19.2 MS.
IMP: 34 DELAY: 19.2 MS.
IMP: 4 DELAY: 19.2 MS.
IMP: 25 DELAY: 19.2 MS.
IMP: 24 DELAY: 19.2 MS.
IMP: 1 DELAY: 25.6 MS.
IMP: 47 DELAY: 44,8 MS.
IMP: 6 DELAY: 0.0 MS.
IMP: 44 DELAY: 19.2 MS.
IMP: 10 DELAY: 19.2 MS.
IMP: 37 DELAY: 19.2 MS.
Figure 5-1

When many thousands of tagged packets are generated, it is
desirable to have a program which reduces the data to some
suitable form. We developed such a program, and figure 5-2 shows
some sample output from it. In this example, we have collected
tagged packets from three source IMPs -~ 14, 47, and 50. All had
a single destination -- IMP 9. The output shows exactly how many
packets from each source were collected (2672 from IMP 14, 2667
from IMP 47, and 2675 from IMP 50). It also shows the average

delay per packet for the packets from each source (34.94 ms. for

- 55 -

R T

T e e R AT

Report No. 4088 . Bolt Beranek and Newman Inc.

SOURCE: 14 COUNT: 2672 DELAY: 34.94 Ms.

PATH: 14-18-10-37- 9
COUNT: 2672 DELAY: 34.94 100%

PERCENTAGE OF LOOPING PACKETS = 0.00%
AVERAGE PATH LENGTH = 4.00 HOPS

SOURCE: 47 COUNT: 2667 DELAY: 32.40 MS.
PATH: 847-55-59- ¢
COUNT: 2667 DELAY: 32.40 100%

PERCENTAGE OF LOOPING PACKETS = 0.00%
AVERAGE PATH LENGTH = 3.00 HOPS

SOURCE: 50 CCUNT: 2675 DELAY: 43.56 MS.

PATH: 50-14-18-10-37- 9
COUNT: 1417 DELAY: 45.62 53%

PATH: 50-29-46-60-58- 9
COUNT: 1258 DELAY: 41.24 47%

PERCENTAGE OF LOOPING PACKETS = 0.00%
AVERAGE PATH LENGTH = 5.00 HOPS

TOTAL MESSAGES FROM ALL SOURCES = 8014
PERCENT LOOPING PACKETS = 0.00%

Figure 5=2

- 56 =

Report No. 4088 ' Bolt Beranek and Newman Inc.

IMP 14, 32.44 ms. for IMP 47, and 43.56 ms. for IMP 50). 4’1 the
packets from IMP 14 followed the same path, as did all the
packets from IMP 47. On the ther hand, two different paths were
used to rcute traffic from IMP 54. The output shows exactly how
many of these packets (in absolute numbers and percentages)
travelled each of the paths, as well as the delay on each path.
The reduction program also computes the average path length for
each source-destination pair, and counts the number of 1looping
packets (péckets which traverse some IMP more than once) from
each source. The output of this program enables us to see
exactly how packets get routed under a variety of network

conditions.

In order to process the tagged packets, it 1is necessary
first to collect them on our TENEX system, which is a host on IMP
5. However, 1t 1is sometimes convenient to experiment with
traffic flows that do not have IMP 5 as their destination. (Note
that the packets shown in Figures 5-1 2nd 5-2 were directed to
IMP 9, not IMP 5.) We devised the follcwing procedure to achieve
this. Whenever a raw tagged packet is destined for the discard
fake host at any 1IMP, it is not discarrded; rather it is
forwarded to TENEX without any further tagging. (A "raw" packet
is a datagram, a special kind of data packet which is not subject
to any end-end flow control or sequencing. The "discard fake

host" in each IMP is a special destination which ordinarily

- 57 -

e S LTSRSV SO S P

Report No. 4088 _ Bolt Beranek and Newman Inc.

serves as an infinite data sink, discarding all packets it

receives.)

It 1is worth pointing out that although the tagged packet
mechanism is quite simple in concept;, it turned out ¢t. be
surprisingly difficult to nplement correctly. It is one of
those things that is easy to design into a network initially, but
difficult to graft into an existing network. One source of
difficulties is that the IMP really does not expect the contents
of a packet's d2ta field to change, and a gzocd deal of special
care mnmust be given if this is not the case (as with the tagged
packets). Another source of difficulties is that there are many
special causes to consider. For example, The number of nodes
tiraversed by the packet may be greater than the number of data
words in the packet (in which case the packet is touo small to
contain all the tags), or a packet may first be queued for a
line, then re-routed to ancther because the first line goes down.
Nevertheless, once all these difficulties were discovered and
eliminated, the tagged packet provided a very simple and
straightforward means of evaluating the new routing scheme's

performance under a variety of conditions.

In order to use the tagged packet, we had to have a way of
generating variable amounts of tagged traffic. To do this, we
used the IMPs' message generator. Message generator is a fake

host in each IMP. It is capable of transmitting one packet every

- 58 -

SRRSO -

LE)
W ronmreren

0 g £ rrne sy
| i
[ree——— T ——

N

I—

——

ST T WL kIR TR R, T AR TR MR ¢ P 6, 3 T it i o 2T N oy Lt

s b -y
) p——

Report No. 408§ . ‘ Bolt Beranek and Newman Inc.

n "fast ticks", where n is a power of two and a fast tick is a
period of 25.6 ms. The size of the generated packets, th: value
of n, the destination of the packets, and the settings of other
bits in the host-IMP leader field are parameters which have to be
set before the message generator 1is activated. (tmong these
other leader bits are the bits which specify whether a packet is
raw or not, as well as whether it is tagged or not.) We did not
find it necessary to make any changes to the message generators
themselves, but we did make some improvements to the NCC's

capability of controlling the message generator. One improvement

was to extend the functionality of the mesiage generator command
so that it would set all the message parameters at an IMP at
once, and another was to set the same parameters at several IMPs
at once. This sort of improvement may not srem very important,
but it must be remembered that our testing sessions were gquite
iimited in length. Thus it was very important to be able to
start up our experiments quickly, with as small a prcbability of
making an error as possible. The improved message generator

command contributed greatly to this.

Another =simple and straightforward method of measuring the
performance of the new routing scheme is simply to install a set
cf counters irn the 1IMP, each of which counts the number of
occurrences of some important event. e established the

following ten counters:

Sy
q]

[T

i

H

- 59 -

T R o e D, T S O D ST, By S O R LT ST
ES L R S R R
s B - — e ,

-

Report No. #4088 ' Bolt Beranex and Newman Inc.

1) Updates generated - Each IMP Kkeeps s counter of the

number of routing updates it generated. The number of updates
generated by an IMP depends on the changes in delay on the lines
leading from that IMP -- the more frequently there is a
significant change, the more often there are updates generated.
The delay does not usually change frequently by a significant
amount unless there is a great deal of traffic, so the value of

the counter should be roughly proportional +to the amount of

8 emanen 2 4

traffic through the IMP. Since it is the measurement process
which decides when to send an update, this counter enables us to

make a simple check on its performance.

2) Update packets processed - Each IMP keeps a count of the

number of routing updates it has processed, so we can determine
if the frequency of routing update processing at some IMP is
similar to what we expect. Also, since all routing updates are
processed at all IMPs, at any given time this counter should have

the same value in all IMPs. If that were not the case, it would

prove that the updating protocol was failing to deliver all the

updates to all the IMPs,

3) Line updates processed - Everv update packet from a

particular IMP contains information on all the lines emanating
from that IMP, That is, every update packet contains several
"line updates™, a line update ‘being the update for a particular

line., The shortest path compulation processes the 1line updates

- 60 =

by
Ty

h 'jﬂ‘m}’uﬁgﬁmﬁ,,?,;“v%’zt”&‘?wwwmmww,.m‘,‘ -)

e

L Rl o T T Ry M i S TR A Iy immﬁgz Ry

S B X o S ER oGk e
N St %%;?;{;

g =

FS RIS

N

il

A

e
o

d

S

[7

b it

Report No. 4088 _ Bolt Beranek and Newman Inc.

one at a time, so it is the number of line updates rather than
the number of update packets which determines how often the
computation runs. In order to see how often the computation is
run, the number of line updates is counted. This number should

also be the same in all the IMPs.

4) Average length of routing update queue - When routing

update packets arrive at an IMP they are queued for processing.
The average size of ¢this queue 1is an indication of how much
computational load is placed on the IMP due to the processing of
routing wupdates. We measure the average queue length with the
following techniques. Whenever a routing update packet arrives,
the number of routing wupdate packets which are already on the

queue (including any packet which is currently being processed)

is counted, and this count 1is added to a cumulative counter.
When this cumulative counter is divided by the total number of
update packets processed, the result is the average number of
update packets behind which a newly arriving update must wait,

i.e., the average queue length.

5) Maximum length of routing update queue - In order to get

some idea of the variance in the length of the routing update

queue, we also keep track of its maximum length.

6) Number of line updates which report changes - The new

routing scheme sometimes causes updates to be generated even if

- 61 =

o

G P

GRS Y % ch
R S P AT M st v n o s

%

ST AT T T

L ST e amTeR T BT S SATa e s R PO F TR TS T I AL S Ry A

Report No. 4G88 ' Bolt Beranek and Newman Inc.

there 1is no change in the 1line-state information. It 1is
interesting to know what proportion of the line updates actually
report changes. This number should also be a constant from IMP

to IMP.

7) Number of updates which may cause changes in

shortest-path tree - The shortest-path computation that runs in

each node produces a shortest-path tree of the network with that
node as the root. Certain line updates can never cause changes
in a node's shortest-path tree. If the line update reports no
change, or if it reports on a 1line which is not in the
shortest-path tree ana that line has not improved, then no change
in the tree can result. Each IMP keeps a count of the number of
line updates it processes which may cause changes in its tree
(which is not the same as the number which actually do cause
changes in the tree). Since each IMP has a different
shortest-path tree, this number is not a constant from IMP to
IMP. Rather, it gives an indication of which IMPs have to
perform the most computational work to react to changes in

network delay.

8) 01d updates - The updating protocol has been carefully

designed to ensure that upda%es which are received out of
sequence are discarded, rather than being processed out of order.
Each IMP maintains a count of the number of update packets

arriving out of sequence.

B

[

§ ity

[Lt | Aot

[rgarak]

5

- T = o2 ST SSRGS
e R e S e T R A R 5 TS T N T ST ﬁ@hm‘@gyw?@@gﬁ%ﬁgg%‘@@ﬁﬁﬁ’ﬁ%ﬁ%%wﬁgﬁﬁjﬁﬁﬁ%

Report No. 4088) éolp Beranek and Newman Inc.

9) Duplicate current updates - Because of the way the

updating is done, it is possible for an IMP to receive duplicate

copies of some update. The number of such duplicates is counted.

10) Retransmissions of routing updates - The updating

protocol employs a positive acknowledgement retransmission
scheme. An update will be retransmitted on a 1line if the
acknowledgement for the update is not received within a certain
amount of time. The number of retransmissions made on each line

is counted.

11) Received spurious retransmissions - A "spurious"

retransmission 1is one which was not really necessary. For
example, if an acknowledgement does not get through, the update
being acknowledged will be retransmitted, although it has already
been correctly received. The same thing will happen if the
retransmission time-out period is too short. All update packets
carry a special bit indicating whether or not they are
retransmissions. This enables the IMPs to count the number of
spurious retransmissions they receive. By comparing this number
with the number of retransmissions sent to the IMP, one can

determine what fraction of the retransmissions are spurious.

It 1is possible to zero out all these counters in all IMPs
from the NCC at the beginning of each test session. At the end

of each test session, the counters are collected into a TENEX

- 63 =

50 L et T T S WA Ty SRS T o SR S geve T o BT 7 % T b, R T T A TR e e T o BT S S B A TAS N IR e e S e e SR PSRN RO AR ok

Report No. 4088 .) Bolt Beranek and Newman Inc,

file, where they are converted to a human-readable form.
Unfortunately it is not possible to take a network-wide snapshot
of the state of the counters at some instant. It takes about
10-15 minutes to collect the counters, and during this interval
the counters keep on counting. This means that in comparing
counters from different IMPs we must remember that the counters
have not all been collected simultaneously. However, this has
not proven to be a real problem in practice. Appendix 1 shows

the values of these counters after one test session.

It is often useful, when testing the new routing scheme, to
be able to look at the shortest-path tree that has been computed
by an IMP. To facilitate this, we developed a program which
looks into a running IMP (or, alternatively, an IMP core dump),
figures out what the tree is, and prints it out in an easily
readable format. Figure 5-3 shows some sample output from this
program. The "father-son" relation is indicated by vertical
spacing, and the "sibling" relation is indicated by a horizontal
line. This program for displaying trees is a very valuable
software tool. Before it was developed, the only way to look at
the tree in some IMP was to stop the IMP, dump it, and then spend
30 minutes crawling through the dump, trying to reconstruct the
tree. (Any tool which saves a person 30 minutes at a shot is

very valuable indeed!)

- 64 -

e ¢

N R N

Report No. 4088 , Bolt Beranek and Newman Inc.

% 36
5 15
1 e L b
22-—-mommmmcnnnne 56 51 34
Y- T e— 48 43 2 21-===}
35- 7 62 64 32 25
3 23 13 33~=-==59 24
1 53==-=17 9 12
54 38 28-19-39 40=---58-37 I e 55
26 8 49-63 46 6 14
5 61 31-44 50----18
30 29-20
66
Figure 5-3

We also developed a set of programs enabling all routing
updates, or only those routing bpdates from a particular IMP, to
be collected on TENEX, where they can be processed. This enables
us to directly inspect the outputs created by the deiay
measurement process while the new routing scheme is running. We
have also used the IMP's standard trace package to collect data

en the delays of individual packets.

Before proceeding to the next chapter, where the results of
our testing will be summarized, it 1is worthwhile discussing
briefly some of the possibie software tools which we considered

but chose not to develop. For instance, we did not develop any

v

- 65 =

r7 ey o by
R A A R P S T R AR ey

S o e - - - g - ——

B it

Report No. 4088 _ Bolt Beranek and Newman Inc.

instrumentation code for timing the new routing scheme. As a
result, we cannot claim to have measured the amount of CPU
bandwidth devoted to routing. Since the shortest-path
computation is interruptable by many other processes, attempting
to time it would involve a large amount of IMP code which turns
the timers off whenever the ccde is interrupted, and then back on
when the code resumes. Additional complications arise from the
fact that pieces of the routing code occur at different places in
the IMP, and at different priority levels. Although it would
have been very desirable to have exact timing information about
the new routing scheme, we were dissuaded by the complexity of
the task. Not only would it have required an excessive amount of
programme: time, but it would have caused us to violate the rule

that all measurement tools should be simple.

In our first semiannual 'report, we described the Snapshot
Measurement Package, a software package which can be loaded into
the IMP and used to evaluate the performance of a routing scheme
under extremely heavy loads. Unfortunately, we have not been
able to use this package recently for the simple reason that it

will not fit into the IMP al»ng with the two routing schemes.

As discussed previously, each IMP counts the number of 1line
updates which may result in changes tc its shortest-path tree.
It would have been more desirable to count the number of updates

which do cause changes, and to measure to magnitude of these

- 66 =

Report No. 4088 . Bolt Beranek and Newman Inc.

changes. Unfortunately, there is no single ,oint within the
shortest-path computation at which one can tell whether a change
has been made. During the computation, the shortest-path tree
may be transformed several times, but there is no simple way of
knowing whether any of these transformations will survive to the
end of the computation, or whether they will be transformed
again, possibly back to what they were initially. The only way
to tell whether a routing change has been made in the course of a
particular instance of running the shortest-path computation is
to save a copy of the initial ¢tree, so it can be directly
compared with the tree which exists after the computation is
done. The memory and processing expenses to do this (especially

the former) are too great to make it worthwhile.

As described previously, we have the ability to display the
shortest-path tree in any IMP. This enables us to do some
spot-checking but it does not give us a means of systematically
examining the way the trees change in response to particular
events, We considered the possibility of implementing an
event-driven routine which would write a representation of the
shortest-path tree into a packet, which could then be transmitted
to our TENEX system. 1In order to do this, the IMP would have to
run with interrupts inhibited for as long as it takes to copy the
tree. This 1is clearly undesirable, so we decided not to

implement the feature.

- 67 =

A e T e T e T

ﬁ%@;
I:?Av
]
&
é
f
|
s
1
[}

Report No. 4088 _ Bolt Beranek and Newman Inc.

RS e

6. TESTING THE NEW ROUTING SCHEME --- RESULTS

In this chapter we present selected results from our testing
of the new routing scheme. It 1is not our intention here to
discuss all our tests nor to present all our data. Rather, we
present recults which we believe to typify the performance of the
new routing scheme. For presentation purposes, we divide our
tests into five categories: topological stress tests, resource
utilization tests, updating protocol tests, traffic flow tests,
and packet delay tests. This way of categorizing our tests is
purely a matter of presentation, and does not correspond to any i

chronological or operational categorization.

1. Topological stress tests. A routing scheme must be *“'-»

to react quickly and correctly to sudden changes in the topology

of the network (a line or a node coming up or going down.) The
routing scheme must not only be able to respond to single
topological changes, but also toc multiple simultaneous changes,
including those sets of changes which lead to network partitions. Tl
One way to stress the routing scheme 1is to induce such

topological changes, both singly and in combination. This puts i
stress on all the significant components of the routing scheme.

When a line goes up or down, the measurement process must detect .
that immediately, and cause an update to be sent,. Determining .

whether this actuaily works is more complicated than it may seem,

}

since there are mény situations that may bring a line down, and

P

!

iy
‘Wﬂ#a

- 68 -

il
i

i
e

P

| ey i
TREN
U]

A

AR TG R AR S X R R

Report No. 4088 _ Bolt Beranek and Newman Inc.

the measurement process must detect all of them. When 1lines go
up and down in rapid succession, a great deal of stress is placed
on the data base management procedures. Applying topological
stress is the best way to detect any incorrect order-dependencies
which exist. Inducing topological stress also tests the
reachability algorithm of the shortest path computation. When
the topology changes, the shortest-path computation must be able
to determine which IMPs are unreachable. Topological changes
also stress the updating protocol. In our second semiannual
report, we discussed the way in which partitions of %“he network
can cause the IMPs to get out of synec with each other. The
updating protocol was carefully designed to avoid any such
problems, but only by actually partitioning the network could we
determine whether our design really worked. Also, the presence
of topological changes puts greater than normal stress on the
part of the updating protocol which attempts to ensure that no
updates are processed out of order. Ordinarily, updates from a
given IMP must be separated by at least 10 seconds (the
measurement period). However, if a line at some IMP goes down or
comes up, two wupdates from that IMP may be sent with an
arbitrarily small interval between them. This makes it much more
likely that the updates will arrive at some other IMP out of
order, and thus it exercises the part of the wupdating protocol

that detects out-of-order updates.

- 69 -

N T S TR e St SRR AT o S -~ .
U N e B R N D T e B e S T i e
, I m&@rfrs??"::v\—%‘”’*“’C%:%‘:&m*‘f%,%’%ﬁ*«ﬁ:‘:

R

Report No. 4088 _ Bolt Beranek and Newman Inc. —

We caused 1lines to go wup and down using five different

methods: !

a) Altering a particular memory location in the IMP. This

causes the line to go down, and then to come back up as

St
A

AE

soon as possible (i.e. one minute later).

e
GF

i
.

b) Looping and unlooping lines by command from the NCC. A -

%5 line looped in this way stays down until it is unlooped

o t
B by another command. L
]

3 i
? ¢) Looping and unlooping lines by pressing a button on the {i
o

i modem simulator box. (This could only be done at IMPs .
§§§ located on BBN's premises, which used modem simulators 5

rather than real modems and phone lines.) ;

B

r

d) Physically pulling out and inserting cables into a modem

simulator box.

e) Physically pulling out cables and re-connecting thew in

a different configuration, Thus not only does a line go

down, but when 1t comes back up, the IMPs it is

prcary

connected to have different neighbors over that 1line

than they did before. :

To 1induce IMPs to go up and down, we sometimes restarted them by

[Rr—r——
f

command from the NCC (which causes the IMP to go down and then

come back up within several minutes), and we sometimes halted

§ ot iy

[y

- 70 =

By e

Report No. 4088 . Bolt Beranek and Newman Inc.

them manually by means of the console switches. We have induced
partitions by various combinations of these procedures; and have
experimented with partitions of various sizes and durations. In
addition, during many of our field tests, lines and/or IMPs went
up or down due to "natural causes", providing further unplanned

topological stress tests.

These tests turned up both program bugs (mostly in the data
base management procedure) and design bugs. It is interesting to
note that we were not able to detect all these bugs by testing in
the lab. We found additional bugs when we tested in the ARPANET,
with all IMPs but one in state II, and a single IMP in state III.
We found more bugs yet when we tested the whole networlk in state
III. After these correctic»s, it appears that the new routing
scheme does respond correctly and quickly to topological changes.
Such changes do cause immediate transmission of routing updates.
These wupdates are processed correctly, and the correct changes
are made 1in the shortest-path tree. Nodes are considered
unreachable by the new routing scheme when, and only when, they
really are unreachabls. The network recovers correctly from
partitions, without 1loss of update synchronization. When a lot
of traffic is being routed over a 1line which goes down, the
traffic is re-routed without creating a network disturbance.
When a line comes up, immediate use 1is made of 1it, whenever

possible. Since we have put the new routing scheme through a

- 71 =

Report No. 4088) Bolt Beranek and Newman Inc.

large variety of topological stress tests, we are confident of
its ability to withstand the topological stresses that are placed

on it under operational conditions.

2. Resource utilization. Several of the counters described

in the previous chapter have enabled us to draw conclusions about
the wutilization of resources by the new routing scheme. These
are reported on in this section. All measurements reported here

were taken while the network was running in state V.

a) Length of routing queue. When measured over a period of

about an hour, most IMPs show a maximum routing queue
length of 2. That is, at most IMPs, there was at least
one routing update which arrived during the hour tnat
had to wait on the queue while two other routing updates
were processed first. Many IMPs show a maximum queue
length of 3. Once in a rare while, a maximum queue
langth of 5 is detected, and maximum queue lengths of 1
are not uncommon. The average queue length, on the
other hand, has never been observed to be above 0.05 in
any IMP, regardless of its maximum queue length.
Typical values of the average queue length are 0.02 and
0.03. This means that almost all routing updates are
processed as soon as they are received; it is very rare

fer a routing update to have to be queued.

- 72 -

o - . R - argees ety REISAE SORAAENAT | A AN e A RS S AT AR S
PRI e oy % EEEROETEA N A A SN BT S TR AR S R AT _rm ﬁgg?&:@%ﬁlﬁggﬁ%%qh

e e T

b)

c)

At

e

: TR
i i e

Report No. 4088 _ Bolt Beranek and Newman Inc.

Total number of updates generated. The number of

updates generated at « particular IMP varies greatly.
Lightiy loaded IMPs generate updates at close to the
minimum frequenzy (cnce every 50 seconds), and heavily
loaded IMPs at close to the maximum frequency (once
every 10 seconds). Several one-~hcur measurements taken
during our testing periods have shown the total number
of wupdate packets processed by each IMP to be about
5000, or about 1.4 upiate packets per second. If we
assume that every update packet contains 2.5 1line
updates (actually the average update packet seems to
contain about 2.2 - 2.4 line updates) then the total
line bandwidth due to routing updates (assuming that no
updates are retriansmitted, and that all updates flow on
all lines) is 246 bits per second. This is 0.5% of a 50
kbps .ine, and 2.6% of a 9600 bps line. This compares
favorably with the 3% -~ 15% used by the old routing

scheme.

Fraction of the updates which report changes. Since

routing updates are always sent at least at some minimum
frequency, even if there is no change in delay, not all
line updates report changes. The fracstion of 1line
updates which do report changes has been observed to

vary from as little as v.26 to as much as 0.56, with

- 73 =

I TR e B

T L S Sy T S A T8 Mty S S A LB - -

R BT L R P op T e

- - - e At et e < o e

Report No. 4088 _ Bolt Beranek and Newman Inc.

0.45 a more typical value. The fraction of line updates
which may cause changes in some IMP's shortest-path tree
varies greatly from IMP to IMP, but is typically about
one-third. (That is, if 45% of the lir? updates report
changes, about one third of these, or 15%, may cause

changes in the shortest-path tree of an average IMP.)

These figures indicate that the amounts of processor and
line Dbandwidth taken by the new routing scheme are quite modest,
well within our expectations, and present no problem. It must be
pointed out, however, that our testing periods are generally
during early morning hours, when the network is quite ligntly

loaded.

3. Updating Protocol. The average number of

retransmissions of routing updates per line varies considerably,
depending on network conditions. During a feirly typical
one-hour measurement, we found the average number of

retransmissions per line to be €6 (with a standard deviation of

“118) . Since there were about 5000 update packets sent on each

line during that period, the average increase in 1line bandwidth
due to retransmissions is about 1.3%. However, the peak increase

due to retransmissions approaches 15%.

Almost all of these retransmissions have heen unnecessary.

That is, in most cases, the number of retransmissions made on

- 74 -

e e T R e TN R AR L W S R - R

Report No. 4088 . Bolt Beranek and Newman Inc.

lines leading to a given IMP is exactly the same as the number of
spurious retransmissions received by that IMP. We have, however,
observed small numbers of IMPs (about 5) receiving small numbers
(fewer than five) of non-spurious retransmissions. It must be
pointed out, however, that our measurements have been made during
early morning test periods {;ﬁén the network was quiet.
Significantly different results may be obtained when measurements

are done during network busy hours.

Only a tiny number of routing updates have ever " been

observed to arrive out-of-sequence.. In one one-hour measurement,
a single IMP received 17 out-of-sequence updates. In another,

each of five IMPs received a single out-of-sequence update.

Each IMP also counts the number of updates it receives
which, although they are in proper sequence, have already been
seen (i.e. are duplicates). The updating protocol sends all
updates on all lines, so each IMP necessaril, .ees each update n
times, if it has n lines. So if there are a t¢i+® of m update
packets, each IMP must see at least m¥(n-1) durliicate updates.
Any receivea spurious retransmissions are also counted as
duplicates. When the expected duplicates and the spurious
retransmissions are subtracted from the count of duplicates, we
found during a one-hour measurement that each IMP received an
average of 193 duplicate wupdates (with standard deviation of

161). When retransmissions and duplicates are taken into

- 75 «

T T OTEIRSTLORT RS S S T TR o e e e T R A XS e S T iy A - N -
; e R A e e e e A T e .
; e T R e L S T L B e SR e et

Renort No. 4088 _ Bolt Beranek and Newman Inc.

"

account, the average line utilization due to routing wupdates 1is

0.53% of a 50 kbps line and 2.7% of a 9600 bps line.

4, Traffic tests. We performed a number of tests to see

how the new routing scheme reacts to particular offered traffic

loads. One of our goals was to determine how well the new

e

routing scheme does at routing traffic around congested arcas.

Figure 6-1a shows the shortest-path tree at node 30 before one of “

RN

u'i.t....ﬁ?w
(oY U]
w o

= 40
- 1 T — 9
. 5 58em-m- T 59
% 60 10 12
5 46 4418] SO — 55
29 6 25 47
% 19mmmm e 50 4
26-17 14-20 34
B 38 28-13 Y SR, 21
A 53 62 15 2
48 36=16===~11 ' 5i=32
22-===56 43
52 33
35-7 1
23

Figure 6-1a

our experiments. (The network was running in state V at this
time.) Note that node 24 has a rather large subtree, consisting

of 21 nodes. After displaying the tree, we turned on a message

e ey
[See——

- 76 -

T
(N

T T PR e I T e T A R P by BT SRR R gt

ot W e - - —— PR

Report No. 4G88 Bolt Beranek and Newman Inc.

generator to send traffic from node 24 to node 25. The generator

was set to its maximum rate. Figure 6-1b shows node 30's tree

30
63
40
R i 9
5 58mmmmmmm e 3Twmmmmn= 59
60 10 12-~~-33
46 44-18 24~55 1
29 6 25 47 23
L R e 50 7
26e=u=1T 14-20 52
38 28~m=~mw- 13 35
53 62
48
22
11
‘ 15-~--56
36-16-45 43
51 34 32
y 2
21

Figure 6-1b

after the generator was turned on. Note that the size of node
24's subtree has been reduced to 1. That 1is, before the
generator was turned on, node 30 was willing to use the 1line
between 24 and 25 to send traffic to any of 21 IMPs; after the
generator was turned on, node 30 was willing to use that 1line
only for traffic destined for node 25. Figure 6-1c shows node
30's tree after the generator was turned off. The subtree of
node 24 has now been enlarged to 10 nodes. This shows that the
new routing scheme was able to detect the load placed on the line

between 24 and 25, and react to it properly.

- 77 -

B T . .
- ” = LT AT R A AR E R E AT T TSI A g S TR e

= *"x.‘éiz’?‘?;’%r;ﬁ'?\;ﬁ:%fﬁw@;‘}@m}}?ﬂg&?é SRS

Report No. 4088 Bolt Beranek .and Newman Inc.

30
63
40
Jommm e 49
50~rmm—— ————————— 58==~--37 5
12mccwnwn 33 60 10
) | DR Y SR 46 18-44
25 47 23 29 14 6
4 7 19mmmam 50
34 52 26-17 20
21====45 35--22 38 28
2 15 11-48 53
51-32 16-~36 56 13
43 62

Figure 6-1c

We also performed experiments in which we deliberately
induced severe congestion in order to see how the new routing
scheme would react. We prepared a special software patch which,
when placed in an IMP, would cause that IMP ton refuse to
acknowledge a specifiable percentage of the packets which arrive
over a particular line. These packets then have to get
retransmnitted by the neighbor, causing the delay on that line to
get very large. We placed this patch in IMP 59, causing it to
refuse to acknowledge packets from its neighbor IMP 64. Packets

from other neighbors of 59 were not afrected by this patch. We

- T8 -

S

S

R P

Report No. 4088) Bolt Beranek and Newman Inc.

sent 20 packets per second (each packet being 1192 bits 1long)
from 64 to 59, 1in order to induce a high delay on the line
between 64 and 59. Then we sent tagged packets from IMP 43 (a
neighbor of 64) to IMP 9 (a neighbor of 59). The min-hop path
for such packets i3 43-64-59-9, However, because of the
congestion on 1line 6U4-69, we would expect at least some of the
packets to travel alternate routes of greater hop 1length. We
performed six experiments. The results of these experiments are
shown in Appendix 2, along with a map of the ARPANET as it was
when these experiments were done. The reader should refer to

this appendix while reading the discussion below.

a) For our first experiment, we set node 59 to reject (i.e.
to fail to ecknowledge) 80% of the traffic arriving on
its 1line from 64. We sent tagged packets from 43 to 9
at tlie rate of 10 packets per second, with each packet
containing 1192 bits (including all overhead and
framing). The results shown in Appendix 2a indicate
that all the traffic from 43 to 9 avoided the min-hop
path, travelling over five 1longer alternate paths.
Close inspection of these five paths shuws that there
are really only two disjoint paths used, the other three
being minor variants of the first two. The traffic from
43 divides almost equally over their two patns, with

slightly more traffic using the path which is slightly

- 79 -

ST N 0T o STt A LNTR LM T meRe T s L e e GRUEESUD Ne TR RO S T

Report No. 4088 . Bolt Beranek and Newman Inc.

b)

e = eo b TR e = = = e e

shorter. This is the best result that can be expected

from a single-=path routing scheme.

It 1is worth noting that this sort of performance would
not be possible witn the old routing scheme. Note that
some packets traveled a 12-hop path, even though a
(badly congested) 3-hop path was available. The old
routing scheme assigns each network line a "delay" which
is between 4 and 12. Thus the highest possible delay on
a 3-hop path would be 36, and the lowest possible delay
on a 12-hop path would be 48. Since 36<48, the old
routing scheme would =2lways use the 3-hop path, no
matter how badly congested it was. The new routing

scheme shows much greater adaptability.

In our second experiment, whose results can be found 1in
Appendix 2b, we set node 59 to reject only 67% of the
packets arriving on the line from 64. This causes 1line
64-59 to have a lower delay than in the first
experiment. We see now that 28% of the traffic from H43
to 9 did wuse the min~hop path, experiencing a rather
large delay. The other 77% of the traffic traveled over
alternate paths. As can be seen from the results, the
amount of ¢traffiec on an alternate path is inversely

related to the delay on that path.

- 80 -

Report No. 4088 , Bolt Beranek and Newman Inc.

In couparing experiments a and b, we see that the new
routing sclhieme has a tendency to gravitate to min-hop
routing unless there is a very strong reason to avoid

it.

It 1is also worth noting that of 2010 packets collected,

only one looped.

e) Our third experiment was just a repeat of our first,
except that the amount of ¢traffic from 43 to 9 was
doubled to 20 packets per second. Here 2% of the
traffic from 43 traveled the high-delay min-hop path,
and'the other 98% split evenly between variants of the
two disjoint alternate paths. What is interesting to
note here is that the number of variants of these paths
has increased from 5 to 7. This 1illustrates an
interesting property of the new routing scheme. As the
offered traffic 1load increases, there is a tendency to
look for paths where there is excess bandwidth, and to

try to make use of the excess.

d) Our fourth experiment is a repeat of the second, with
the traffic rate from 43 increased to 20 packets per
second. (Or it may be considered as a repeat of the
third experiment with the percentage of packets from 64

rejected by 59 decreased from 80% to 67%). The results

- 81 =

T T T AT Lt et e

Report No. 4088 Bolt Beranek and Newman Inc. .

are similar to those of the second experiment. A
significant proportion of the ¢traffic traveled the

min-hop path, and the remainder is divided over variants

b of the two disjoint alternate paths. The number of

A

non-locping variants is only 4, but there are 10 paths
which contain loops. The percentage of looping packets
is less than 1%; these packets were already on their way
across the network when a routing change was made

causing them to backtrack and change paths. In none of :,

W’W’mﬁ%’w A W“%J’mﬁ e

;

.
L

these loops is any node traversed more than twice., This

14

indicates that the 1loops are a purely transient
phenomenon occurring during a period of adaptation,
rather than a long-term phenomenon due to some problem
with the routing scheme. However, it must alsc be noted
that some2 of these loops contain a large number of hops,
and packets which 1loop do have a significantly larger

end-end delay than do other packets.

e) Our fifth experiment was a duplicate of the first, ;

except that we also sent tagged packets from node 56 (a

e g

neighbor of 43) to node 9. Both 43 and 56 sent at a
rate of 10 packets per second. Virtually no traffic
traveled over the min~hop path., Node 43 sent about 60%
of its traffic along the "northerly" alternate path, and
40% along the "southerly" one. Node 56 split its

traffic in the opposite proportion.

- 82 - H

o
e

2
- e s T e

—

ey
"

)

—

e
o o §

!

Report No. 4088 , Bolt Beranek and Newman Inc,

This last routing pattern is interesting, and deserves some
discussion. One might have expected, a priori, that node 56
would have sent all of its traffic on the southerly route, while
43 would have sent all of its traffic on the northerly route.
These are the respective minimum delay routes, and use of these
routes would prevent traffic flows from the two source nodes from
interfering with each other (until they actually reach their
destination). However, this sort of reasoning must be used with
extreme caution. It is true that the traffic from 43 which went
north experienced a smaller delay than the traffic that went
southn. But is simply does not follow that it would have been
better had all the traffic from U43 gone north. This is
especially true since we have no way of knowing what other
traffic flows existed in the rest of the network at the time we
did our experiment. It is interesting, though, to compare the
delay from 43 to 9 which we observed in the first experiment with
that which we observed in this experiment. Cther things being
equal (which might or might not have been the case), this will
enable us to see how the introduction of the traffic flow from 56

to 9 impacted the delay of the traffic flow from 43 to 9.

In the first experiment, the average delay of packets from
43 to 9 along the northerly path (43-32-2-21-34-4-25-24-12~59-9)
was 312.3 ms., or 31.23 ms. per hop. The correspcending delay in

the fifth experiment was 333.87 ms. or 33.39 ms. per hop. This

- 83 -

R it) e A S ‘@%ﬁ?ﬁ%ﬁw%‘ =33

Frai e 2 N
; SRR G

Report No. 4088 .) Bolt Beranek and Newman Inc.

is an increase of only 2.2 ms. per hop. In the first
experiment, the average delay from 43 to 9 over all paths was
317.51 ms., or 28.66 ms. per hop. The corresponding delay ia the
fifth experiment is 33.12 ms. per hop. This is an increase of
less than 4.5 ms. per hop. The new routing scheme treats the
per-hop delays in quantized units of 6.4 ms.; increases of less
than this value would not be expected to cause a large change in

the routing patterns.

Another interesting fact about the fifth experiment is tnat
the average cdelay from 56 to 9 along the southerly path is almost
the same as the average delay from 43 to 9 along the northerly
path. That 1is, there are a pair of neighbors who see
approximately equal delays along a disjoint pair of paths to a
common destination. Under the old routing scheme, this sort of
situation tends to cause the formation of long-lasting ping-pong
loops between the pair of neighbors. Under the new routing
scheme, no such loops are formed, and the only penalty is a small
increase on the average per-hop delay (though it must be admitted
that there 1is a larger increase in the variance of the per-hop

delay.)

In many of these experiments, paths were used which are
slight variants of the main paths. These variants tend to be
very similar to the main paths, butv have a few more hops.

Examining these variants shows an important property of the new

- 84 -

)

Report No. 4088 . Bolt 3erurek and Newman Inec.

routing scheme, namely that it shows a tendency to seek out and
use paths c¢n which there is excess bandwidth, as long as these
paths do not diverge too greatly from the paths of least delay.
Under conditions oi overload, the paths with thg fewest number of
hops fill wup quickly, and the new routing scheme has been
observed to try to use all possible paths in order to deliver the
packets to their destination. That is, under overload
conditions, the new routing scheme can attempt to fill the whole
net with traffic. This is appropriate from the perspective of
routing, but it illustrates the need for improved flow control
and congestion control techniques to prevent the network from

overloading.

In our second semiannual report we presented sorwe
mathematical analysis which purported to show that the new
routing' scheme would enter an wunstab!- state under certain
conditions. When in this state, the traffic in the network would
oscillate wildly from one bad path to another, never settling
down to a good path. This sort of oscillation was predicted to
be especially bad when the network consists of a 1loop topology.
We engaged in an extensive series of tests to determine whether
instability could be a real problem for the new routing scheme as
implemented in the ARPANET. Appendix 3 contains the results of
some of the experiments which we did in cur lab. We set up a

four-node loop network at the lab, and gave it a stub connection

- 85 «

B, e We s stegmon

Report No. 4088 , Bolt Beranek and Newman Inc.

to the ARPANET (so that we could use the ARPANET to collect data
from our lab net) - this network is pictured in Appendix 3. The

experiments are discussed and described below.

a) In our first experiment, we had each of nodes 60, 61,
and 66 send 10 packets per second to node 30, with each
packet being 1192 bits 1long. Nodes 61 and 66, the
immediate neighbors of 30, each sent 99% of their
traffic to 30 over the single hop path. Node 60 split
its traffic over the two possible paths. If routing
oscillations were present, we would expect that 61 would
send half its traffic via 66, and 66 would send half its

traffic via 61, tut this has not occurred.

It is interesting to note the behavior of the traffic
from node 60. Rather than splitting 50-50 over the two
possible paths, it splits 60-40. Furthermora2, the delay
on the path via 66 is only half the delay on the path
via 61. Our explanation for this is as follows. 1In
node 30's internal numbering scheme, the line to node 66
is line 2, and the line to node 61 is 1line 3. If
packets arrive simultaneously on both lines, the packet
from the line with the smallest number 1is processed
first. Therefore, if both lines are heavily utiliized, a
greater delay is seen on the line from 61 to 30 than on
the line from 66 tc 30. This sort of "unfairness" was

observed very frequently in our lab tests.

- 86 -

AT

[T
s 1

¥ e
Yo

S—
[

Report No. 4088 _ Bolt Beranek and Newman Inc.

b) Our second experiment was a repeat of the first, except
. that we doubled the rate 2t which packets were
transmitted. We see trat although the delays are mnuch
higher than in the first experiment, there is little
change in the traffic patteri3s. The only difference is
a slightly greater tendency for packets to enter 30 via
66. The routing does not show oscillation or

instability.

The mathematical work presented in our second semiannual

report. suggested that, if oscillations did occur, they

could be dampened by the use of a bias. 4 bias is a
value which is added to the actual delay on a line
before the shortest-path computation is done. Cur
experiments have all been done without the use of any
explicit bias. However, it must also be pocinted out
that the new routing scheme will never report a delay of
0 on any line. (If it did, long-term routing loops
might form.) The smallest reportable delay is 1 unit,
or 6.4 ms. It is worth noting that when we repeated our
experiments with a unit of 0.8 ms., we obtained the same

results.

¢) In our third experiment, we sent 10 packets per second
from 60 and 66 to 30, but no traffic from 61. The

packets were 1192 bits long. Again, no instability is

- 87 -

EEEEE B e s ARSI A e YT

e
(1 TLI——

Report No. 4088 : Bolt Beranek and Newman Inc.

noted. Node 66 sent all its traffic on the one-hop
path, while node 60 split its traffic almos: evenly,
wiﬁh slightly more traffic traveling on the path with
slightly less delay.

d) Our fourth experiment duplicated the third, but with

double the amount of traffic. The dJdelays are much
longer, but there is no significant change in the

traffic pattern.

e) For our fifth experiment, we added another line, between
61 and 66, to our lab network in order to introduce a
more complex topology. Each of nodes 60, 61, and 66
sent 10 packets per second to node 30. Comparing the
results of the experiment with those of our first
experiment, we see that although the delay from node 60
is slightly better, the delay from nodes 60 and 61 1is
significantly worse. Node 66 sent 15% of its traffic
over the cross-link, while node 61 sent 13% of its
traffic over the cross-link, even though the delay of
the traffic which used the cross~link was much worse
than the delay of the traffic that did not. This seems
to be due to the attempt of node 61 to take advantage of
the fact that the delay on the line 66-30 is 1less than
the delay on the line 61-30. That is, it makes sense

for 61 to send some proportion of its traffic on the

- 88 -

.
u
” o i el e T T I S et A i e oar e
T N e R s Eanaan

—

Report No. 4088 . Bolt Beranek and Newman Inc.

two-hop path (61-66-30), and that is the sort of
performance that would be expected of a multi-path
routing scheme. However, in a single-path routing
scheme, there is no way to control the exact proportion
of traffic which wuses the two~hop path. As a result,
"too much" traffic is sent over the <two-hop path,
causing the delay on that path to get too high; at the
same time, the delay on the one-hop path gets too 1low.
When this happens, 61 switches back to using the one-hop
path; which 1is correct. However, the routing scheme
seems to overcompensate by causing some of the traffic
from 66 to go on the two-hop path via 61. It is
interesting that while the delay on the path 66-61-30 is
twice the delay on the path 61-66-30, the 1latter path
causes t¢wice the ¢traffic of the former path. This
indicates that the more sub-optimal a path is, the

sooner it is removed.

Appendix 4 shows the results of an experiment done in the
real network to test the stability of the routing iLn a
topological 1loop wunder conditions of overload. We seat traffic
from nodes 13, 53, 38, 26, and 17 to node 19. We removed the
line between nodes 13 and 62 so that this traffic could not get
to 19 by heading west, out of the loop. Nodes 26, 38, and 17

sent 10 packets per second, while nodes 13 and 53 sent 20 packets

- 89 -

A & st
xatte s 7 P TR
wvﬂﬁ}?ﬁ}}?@%ﬁmﬁ%ﬁ@ i

e SN T,
o e e R AT < E s 2 o T N e SO S A L e T S HE 5

i
i
!
;

e g LT T et e S TN T
o S D A .
IR LA

Report No. 4088 Bolt Beranek and Newman Inc.

per second. All packets were 1192 bits long. This amounts to

83.4 Kilobits per second of traffic. Since this is too much

traffic to be sent to TENEX, we were not able to ccllect tagged

packets from all five sources at the same time; rather, we

collected tagged packets from two sources at a time. Therefore,

we should not attempt to compare the absolute numbers of packets

sent from each scurce but only the percentages.

It is easy to see that there is no way this 83.4 kbps can be

delivered to node 19 without overloading the neighboring IMPs.

Node 19 can receive traffic over two 50 kbps lines. However, if

53, 38, and 26 all sent their traffic into 19 over the same line,

there is 48 Kilobits per second cn a singlie line, not counting

any user traffic, or retransmissions on that line. This is more

traffic than can be handled. (This is especially true since the

line from 26 to 19 is 19's line number 3, i.e., it is the 1least

favored of 19's three modems.) But any other routing pattern

results in more than 50 kbps of traffic on a 50 kbps line.

The results are quite interesting. Node 17 sent almost 1C0%

of its traffic to 19 on the one-hop path (99.88%, to be exact).

Node 26, the other neighbor of 19, sent only 94% of its traffic
on the one-hop path, and 6% going around the loop the 1long way.
The next neighbors, 38 and 13, each split their traffic in about

an 80/20 ratio, with the majority of the traffic taking the

min-hop route. Node 53 split its traffic in a 68/32 ratio, with

- 90 -

S

R
i
W‘ % oy i

S

G

fﬂ‘!m«;—u-«'

——

i 3
o

imw-mw‘

¥

R
LR

e

Report No. 4088) Bolt Beranek and Newman Inc.

the majority taking the more lightly loaded path, which was also
the path with 1less delay. The most interesting result of-this
experiment is the fact that the routing was such as to equalize
the average amount of our test ¢traffic on the lines leading
towards 19. The line from 26 to 19 carried 41.4 kbps of traffic,
while the line from 17 to 19 carried 42.4 kbps. The line from 38
to 26 carried 33.1 kbps of traffic, while the line from 13 to 17
carried 33.6 kbps of traffic. Thus it appears that under heavy
load, the new routing scheme tends to equalize the average 1line

1oading over the long tern.

Appendix 5 contains the results of two experiments designed
to show how the routing behaves under more moderate 1loadings.

These are described below.

a) In this experiment, nodes 38, 26, 13, and 17 were each
set to send 19.5 kbps of ¢traffic to node 19. This
results in a flow of 78 kbps to node 19, which is quite
a high load for the ARPANET. Nevertheless, all traffic

Yraveled in the min-hop routes.

b) In the second experiment, each of nodes 45, 34, 21, 16,
51, and 2 sent about 2500 bits per second to node 15.
All traffic was min-hop, except for that from 21, which
split about evenly between the 3-hop path and the 4-~hop
path. It is interesting that the U4~hop rpath from 21

- 91 -

Report No. 4088 , Bolt Beranzk and Newman Inec.,

contains a 230.4 kbps 1line, the line from 16 to 1i5.
This experiment shows that the new routing scheme is
able to take advantage of lines of differing speeds. It
also shows that routing tends %o be min-hop under light

loads.

The results of these traffic tests c¢an be summarized as

follows:

i) The new routing scheme 1is capable of detecting
congestion, ana will route traffic around congested

areas.

ii) Routing loops only occur as transients, and packets
never travel any node morc than twice. However, the
actual size of the loop can be many hops, resulting in a

long delay for packets whichk do loop.

iii) Traffic tends to be routed min-nnp in the absence of any

special circumstances.

iv) Under heavy load, the new routing scheme dces not give

optimal routing (which would be impossible for any

single-path algorithm). However, it does not oscillate

wildly between bad routing patterns.

5. Characteristics of individual packet delays. In our

first semiannual report, we presented data showing that the

- 92 -

AN A P S P R e
g
L
Ll atii o Santi ety e

&
|

- . ~ N N . 1 = - - - R e s e T
e S A — - - — - i e 1

[P

Report No. 4088) Bolt Beranek and Newman Inc.

delays of individual packets traversing a line are much more
variable than would be expected. In particular, even when enough
traffic is placed over the line to saturate it, many packets
still show very low delays. We could not explain why the delays
were so variable, but we speculatved that much of the wvariability
might be due to various side-effects of the old routing scheme.
Now that we have the ability to turn the old routing off, we have
gathered some more data on packet delays to see if turning off
the old routing causes any major change in the characteristices of
the packet delays. It does not. Figures 6-2 and 6-3 plot packet
delay vs. time on the line between IMPs 12 and 24, and between 24
and 25, respectively. These plots were obtained by sampling
every tenth packet through the IMP. In each plot, we first
sampled only the ordinary user traffic for several minutes, then
turned on a message generator to saturate the line, then turned
it off again after about 10 minutes. (Full details of the
experimental techniyue can be found in the first semiannual
report.) Even though the old routing was turned off during these
experiments, the extreme variability in delay remains. We still
do not kncw whether this variability can be explained by queueing
theory, or whether it is due to some sub-optimzlity in the IMP
protocols or software. We are currently investigating this
phenomenon by simulation, and will continue to 1look for the

correct explanation.

- 93 -

D= TR WRNTLE RS 7 - T T .- LTI

Repert No. 4088

4

g 92an3dt4g

Bolt Beranek and Newman Inc.

(SNIW) Wil
€e _PE s2

6L/8/€

e &
.

B ST Bt

ol s ard oS

W, TN ol
L] ocoa . ¢« o %
., i .

-,
.« o » wle 2
& 2ot i
.

*Vem” vop
L]

ye-21 aNIT

S

goe

. o.*‘\ala..n.n My o...l.i.«h. ..-.. ’ .

.
L)

BE

a8

a6

aect

BsY

281

S NI AV'130

- 94 -

Bolt Beranuk and Newman Inc.

port No. 4088

keg

€-9 9uan3dty

(2]

(SNIW) 3JWIL
SS OS5 Sy By SE PE S22 @2

A D R N

rd
.c"m;

X
et tee Xty .
$ e, » " s... w2
. %o e >oe °
S LAY ot " 2
PRIt R -l
AN e R4 P, ¢
o, -A-olo'o.oo v %Wy
oo~.‘o . cutn'.”oﬂ Annno-_c!o. c!h
bR LR P
RRRISS nb... e,
e ot% S0 [d]
LA %loo"o

. -

L.oto P nl c-loo -ﬂolm
s @ r . vy,
g0 & 00 .
.. a L .

.
. .

6./8/€ GZ-¥¢ NI

ont

512]

ve6

Bect

Bst

aet

S NI AY130

- 95 -

Report No. 4088 . Bolt Beranek and Newman Inc.

To summarize, the new routing scheme seems to be working
about as expected. While it does not result in optimal routing,
it does perform well, and is successful in eliminating maiy of
the problems associated with the old routing schere. We have not
encountered any unforeseen problems with the new routing -- its
overhead is low, it results in good routing patterns, and it does
not suffer from undesirable feedback effects. We are now ready
to operate the network with the new routing scheme, removing the

old routing for good.

- 06 ~

I S e acarar

R

AT D b S SR

R A D S S O U e

yren)

L (R e

-y

P —

i
e

Report No. 4088 Bolt Beranek and Newman Inc.

7. BUFFER MANAGEMENT IN THE HONEYWELL 316/516 IMP

T.1 Introduction

Many congestion control schemes work by dividing the buffer
pool into several smaller pools, and associating each of these
pools with a particular function. By setting a lower limit on
the size of a pool, one can ensure that there are always a
certain minimum number of buffers available to serve the
associated function. By setting an upper limit on the size of a
pool, one can ensure that no more than a certain maximum number
of buffers are devoted to the associated function. The way in
which these maximum and minimum values are chosen determines the
relative priority of the various functions. That is, if several
functions are competing for a 1limited number of bﬁffers, the
competition is arbitrated by the maximum and minimum sizes of the
various pools. As a prelude to considering congestion control
schemes for the ARPANET, we have investigated the current buffer
management scheme. The purpose of this chapter 1is to describe

that scheme.

The IMP maintains four buffer counters, each of which
specifies the number of buffers currently dedicated to specific

functions. The counters are:

1) Free - the free count is just the number of free

(unused) buffers.

- 97 =

Report No. 4088] Bolt Beranek and Nezwman Inec.

2) Store-and=forward - this counts the number of buffers in

use by the modem-out process, which includes:

a) Buffers which are queued for transmission on an
inter-IMP trunk.

b) Buffercs awaiting acknowledgement over an inter-IMP
trunk.

c) Buffers currently in transmission on an inter-IMP
trunk.

d) Buffers which were formerly queued for transmission
on an inter-IMP trunk which went down.

It 1is, however, possible for a buffer to be in one of

the above categories wituout being counted as

store-and-forward. This shall be discussed later.

3) Allocated -- This counts the number of buffers which
have been pre-allocated by the source-destination
protocol. An allocated buffer also counts as free until

the packet for which it was allocated arrives.

4) Reassembly -- This counts the number of buffers

correctly in use by all other functions.

It is aiso possible for buffers to be uncounted. There is a
period of time after a buffer is no longer free, but before the

IMP has decided what to do with i%.

This is illustrated in Figure T7-1. When a packet arrives

from a neighboring IMP, the "modem in" process gets a2 free buffer

- 98 -

~ . - . L S o g oy
S

Report No. 4088 . Bolt Beranek and Newman Inc.

FRE

BUFFER MANAGEMENT IN THE 316/516 IMP

Figure 7T-1

-~ 99 <

8 o

gl

Bt

Report No. 4088) Bolt Beranek and Newman Inc:.,

for it, and places tne buffer on the queue for the TASK process.
The buffer is un2ounted until TASK looks at it and determines how
it should be counted. However, not all buffers on the TASK queue
are uncounted. When packets are queued for transmission on a
line which then goes down, these packets are replaced on the TASK
queue for forwarding over a live line. These packets are always
counted as store-and-forward even while they are on the TASK
queue. Buffers which contain input from a real o: .axe host, or
wnich contain end-end control packets, are placed on the TASK
queue so TASK can decide how to forward them to their
destinations. These packets are counted in reassembly while they

are on the TASK cueue.

A packet which 1is removed from the head of the TASK queue
must either be sent to a neighboring IMP, or not. 1In the former
case, it must be counted as store-and-forward; in the latter case
as reassembly. However, there 1is a maximum value above which
TASK is not allowed to increase these counters. If TASK cannot
process a packet without increasing some counter above the
maximum, TASK will refuse the packet. In the case of a packet
whiech has arrived from a neighboring IMP (i.e., an uncounted
packet), the packet will be dropped without acknowledgement,
causing the neighboring IMP to send it agzin later. When other
types of packets are refused, they are held in the IMP and

resubmitted to TASK later,

- 100 -

EITITE w mmanivan ot e ameemam g ey st oATe T e A e e -
B - T L o o T e AR AT TS R D Bl T R ST T g

P, o, = e . R A,
RS S o

Report No. 4088 . Bolt Berunek and=Newman Inc.

7.2 Description of Buffer Counters
7.2.1 Allocated

Buffers which are allocated by the source-~-destination
protocol are counted c¢s follows. When the allocate request 1is
granted, the allocate count 4is increased by 1 or by 8, as
appropriate. However, the allocated buffers still count as free,
not as reassembly (and they remain on the free queue.) When the
first packet of the allocated message arrives, the allocate count
is decreased by 1 or 8, and the reassembly count correspondingly
increased. However, the free count is only decremented as each
individual buffer 1is removed from the free queue, as each

individual packet of the allocated message arrives.

7.2.2 Store and Forward

Let m be the number of modems (i.e. inter-IMP trunks) at a
particular IMP. Then the most buffers which can be in wuse by

modem-out at any one time (call it SFMAX) is 6 + 2m, if there is

no 1l16-channel satellite 1line, if there is a 16-channel line,
SFMAX is 13 + 2%(m+1). (The assumption is that a 16-channel line
is entitled to 8 extra buffers for output and one extra buffer

for input.)

There 1is also a minimum number of buffers which must be

available for use by modem-out. That is, this number of buffers

- 101 -

R SN e e ot S+ g SNy g 3058 0 P s o8 18

Report No. 4088 - Bolt Beranek and Newman Inc.

(call it SFMIN) cannot, under any circumstances, be counted as
reassembly or allocated. SFMIN is usually 3m, but there 1is one
exception, iet B be the total number of buffers in the IMP. If
(B-SFMIN) mod 8 = 0, then SFMIN is set to 3m-1. The reason for
this will become apparent later. Note also that with both SFMIN
and SFMAX, m is never taken as less than 2, even if the IMP |is

actually a stub.

The actuzl mechanism for adjusting the store-and~forward
count is controlled by two parameters irn the IMP known as MAXS
and 'MINF. MAXS = SFMAX - m. MINF is set to a constant 3. When
TASK processes a packet, and determines that the packet needs ©o
go but a particular modem, it checks to see whether any other
packets are either queued for, in transmission on, or awaiting
acks on that modem. If not, then the packet is queued for the
modem, and no adjustments are made to the store-and-forward
count. This ensures that at least one packet can always be
transmitted on each line, no matter how many packets are being
transmitted on the other lines. (Failure to guarantee this can
lead to direct store-and-forward lockup.) However, this means
that one buffer per 1line is uncounted. If at least one other
packet is either queued for or awaiting acks on that modem, then
the following two checks are made:

a) Is the difference between the free count and the
allocate count greater than MINF? (i.e are there MINF

free buffers which have not been allocated?)

- 102 -

4
T
e d

{

- e o, o W o SRV o T T T ST AR G e R
e - o e G e em e R AR Ry T AT T MY S BN T TR YR TR R %x\(_ﬁ; %
e v e T e TR TS L YR TR s ematR RS S T T SRR S b3 % %

Report No. 4088 ‘ Bolt Beranhek and Newman Inec.

b) Is the store-and-forward count less then MAXS?
If both these questions are answered affirmatively, then the
packet can be queued for the modem (if certain other checks are
passed, such as availability of a logical channel.) If it 1is
queued for the modem, then the store-and-forward count is

incremented by one.

When a packet is acked, its buffer is freed, and the
store-and-forward count is decremented by one. There is one
exception. If the time comes to free a buffer, and at that time
there are no other buffers queued for that modem or awaiting
acknowledgement over that modem, then the store-and-forward count
is not decremented. This special case 1s necessary since one

buffer on each line is uncounted.

If a line goes down, so that all the packets transmitted on
it or queued for it have to be re-routed, the store-and-forward
count is incremented by one. This ensures that each re~routed
buffer is counted as store-and-forward, even if it was previously

uncounted.

In summary, the purpose of these mechanisms 1is to ensure
that:
a) A certain minimum number of buffers are always available

for modem~-out.

- 103 -

i b

=
34

AR R

A

VA

vt

diorrat s

Report No. 4088 _ Bolt Beranek and Newman Inc. i

) A certain minimum number of buffers are never available
for modem-out, so that modem-out cannot lock out other ,
processes.

¢) It is always possible to have at least one packet 1in
flight on each irnter-IMP line, regardless of the IMP's
buffer utilization conditicn. This prevents direct

store-and-forward lockups.

7.2.3 Reassemvly

The reassembly count 1is controlled by the parameter MAXR.
At initialization time, MAXR is set to B - SFMIN. Note that MAXR
cannot be a multiple of 8, because of the way SFMIN is computed.
Any process requesting a buffer which would have to be counted as
reassembly must specify a parameter p. The following two checks
must be made.
a) Is the sum of the allocate count and the reassembly
count less than the difference between MAXR and p?
b) Is the difference between the free count and the
allocate count less than the sum of MINF and p?
Only if these twe questions are answered affirmatively cah a
reassembly buffer (or an allocate buffer) be obtained. When the
twg questions can ve ansyered affirmatively, that means that the
number of free buffers is at least MINF+p, and that at least p of
those can 8till be taken for reassembly, if that should prove

necessary.

- 104 =

Report No. 4088 _ Bolt Beranek and Newman Inc.

The value of p that is used by a particular process when
trying to get a buffer establishes that process's priority in
obtaining buffers (i.e., a process which uses p=0 can get the
last buffer, subject of course tc the MAXR check). The processes
whichn need reassembly burfers, and the values of p they uce. are
as follows:

1) Creating control packets: p=0
A process which needs to send an end-to-end control
packet is allowed to take the last reassembly buffer.

2) Ordinary host input: p=2
The IMP will not accept a packet from a host unless two
free buffers remain in the reassembly pool.

3) Unallocated single packet messages, including raw

packets: p=2

The IMP will not accept wunallocated single packet
messages for host output unless two free buffers remain
in the reassembly pool.

4) Allocated single packet messages: p=1
The IMP will not pre-allocate a buffer for a single
packet message unless one frze buffer remains in the
reassembly pool.

5) Allocated multi-packet messages: p=9
The IMP will not pre-allocate a buffer for a
multi-packet message unless there are enough free

buffers available for the reassembly pool to hold all

- 105 -

i T e

Report No. 4088 _ Bolt Beranek and Newman Inc. e

eight packets of the message, plus an additional free
buffer. L

6) Packets to be sent to the teletype in the NCC: p=8 %
When a packet has a checksum error, it will be sent to a 3“
special diagnostic teletype in the NCC, as long as there §§
are still eight free buffers in the reassembly pool.

7) Packet core message received from a dead IMP: p=2
"Packet core™ is the name of a special protocol used for
communication between the NCC and an IMP which is in its
loader/dumper. gé

8) Packet core message to be sent to a dead IMP: p=0
7.2.4 Uncounted

Ordinarily, the receipt of a packet on one of the IMF's ‘“
lines causes a buffer to go from "free" to Muncounted”. There ?
is, however, one exception. When a packet is received, it is)
ordinarily placed on the TASK queue. However, beforc this 1is i,
done, the IMP tries to get a free buffer to use for receiving the -r
next packet. If there are no free buffers, then the buffer will
not be placed on the TASK queue. Rather, it will be retained for

the next input. The effect of this is to discard the packet

Without acknowledgement, causing the neighboring IMP to |

retransmit it at a later time.

A—

bueommrend

M’

- 106 -

T ATEAIEE Ledl D g v TS Gafe T S A0 T %D WEIRAR G, T AT R BTN« T L e T St o™ gan, Sy e - frora A v o
< 3 P PRI <8, TS N St T A Ty sy e O R R T Sy SRR A

Report No. 4088 _ Bolt Beranes and Newman Inc.

7.3 Possible Improvements’

Whenever a packet is received from a neighboring IMP, any
acknowledgements which have been piggy-backed in that packet
should always be processed, since processing of the
acknowledgements may enable the IMP £tn free some of 1its
store~and-forward buffers. However, when z packet arrives, and
takes the last free buffer, the packet is discarded, and its
piggybacked acknowledgements are not looked a%. This may cause
buffers to remain occupied when they could be freed. That is,
the time when it is most important to free buffers asgs 300n as
possible 1is the time when buffers are least likely to be freed.
There does not seem to be any reason not to process the
acknowledgements, and failure to do sc degrades the IMP's
performance unnécessarily. Furthermore, it is not clear that the
packet should be discarded at all, even after its
acknowledgements are processed. Presumably, the reason for
discarding the packet is so that its buffer can be re-used to
receive the next input, which otherwise would be lcst due to lack
of buffers. However, there seems to be little point to throwing
away one input so that the next can be received.

When TASK checks the buffer counts to see whether it is
permissible to "move" a buffer into store~and-forward or
reassembly, it does not check to see how the buffer is currently

counted. Rather, it assumes, falsely, that all buffers in the

- 107 -

A R e e s o i - o

s Ny AR s B4 CRREEICS s e S R S TR AR e A R ST e e T B

Report Nc. 4088 _ Bolt Beranek ard Newman Inc.

TASK queue are uncounted. This leads to two sorts of problems.
Recall that TASK will almost always refuse a buffer if there are
not 3 free buffers in the IMP. The apparent assumption is that a
refused buffer will be freed, bringing the free buffer pool
closer to its minimum acceptable value. This assumption is true
in the case of uncounted buffers, which will be freed if they are
refused by TASK, but it is not true in the case of buffers which
are already counted in store-and-forward or reassembly. These
buffers will not be freed if refused. Rather, they will simply
be held and resubmitted to TASK later. Refusing such buffers
therefore actually delays their being freed, which is exactly the

opposite of what is intended.

A related problem arises if the stcre-and-forward count has
already reached its maximum value. Then TASK will refuse all
buffers which have to be forwarded to 5 neighboring IMP (except
in the special case where no packet is queued for or in flight to
that IMP.) TASK will refuse a buffer for this reason, even if

the buffer is already counted in store-and-forward. Again, this

is a counter-productive strategy. Accepting a buffer which is
already counted in store-and-forward cannot possibly increase the
store-and-forward count, so there is no reason to refuse it.
Since buffers on the TASK queue which are already in
store-and-forward are only those buffers which had to be
re-routed due to a line failure, this problem causes the network

to be slower to respond to a line failure than is necessary.

- 108 =~

o s . Yo e e, - 4 e Advane ot A= sre———

pame—

[

I

Report No. 4088 _ Bolt Beranek and Newman Inc.

APPENDIX 1 -~ SAMPLE TEST OUTPUT

In chapter 5 we discussed certain measurements which were
made by keeping counters in the IMP. This appendix contains some
sample computer output generated after collecting these counters.
These measurensients were made while the network was running in
state V (see clapter 5), and they cover a period of slightly more
than one hour. The meaning of each measurement is discussed in
chapter 4. The interpretation of the text labels is as follows:

DUPL CURR UPDATES <~ number of routing update messages

recaived which, although current, are duplicates of

previocusly received ones.

RCVD SPURIOUS RTS -~ number of spurious retransmissions

received.

UPDATES GENERATED -~ number of routing update messages

generated by this source IMP.

RETRANS n -- number of retransmissions of routing update

messages from this IMP to IMP n.

DELAY CHANGES -~ number of line updates which report changes

in delay.

POSS. TREE CHANGES -~ number of line updates which may cause

changes in this IMP's shortest-path tree.

LINE UPDATES -- total number of line updates received.

UPDATE PACKETS -- total number of update packets processed.

- 109 -

Report No. 4088 _ Bolt Beranek and Newman Inc.

AVERAGE QUEUE -~ average length of routing update queue when
new update arrives.

MAX QUEUE -~ maximum length of routing update queue.
FRACTION OF DELAY CHANGES =-- number of delay changes divided
by number of line updates.

FRACTION POSS. CHANGES IN TREE -~ number of 1line updates
which may cause changes in tree divided by total number of
line updates.

LINES PER PACKET -~ number of line updates divided by number

of update packets.

The output is ordered by IMP in decreasing order of

distance from the NCC.

36. HAWAII

DUPL CURR UPDATES 34757
RCVD SPURIOUS RTS 33664
UPDATES GENERATED 137
RETRANS 15 963
DELAY CHANGES 5235
POSS. TREE CHANGES 2013
LINE UPDATES 11479
UPDATE PACKETS 4975
AVERAGE QUEUE 0.03457286
MAX QUEUE 2

FRACTION OF DELAY CHANGES = 0.45605C172
FRACTION POSS. CHANGES IN TREE = 0.175363704
LINES PER PACKET = 2.307336568

- 110 -

Bl b Y

& et

o] P Voawids- | L Woreendy

R—
s > o

{

[—

Lermomned

Eobarnen)
* oo d

“

AW, e

o

Report No. 4088

15. AMES15

DUPL. CURR UPDATES
RCVD SPURIOUS RTS
UPDATES GENERATED
RETRANS 16
RETRANS U5
RETRANS 36
RETRANS 11

DELAY CHANGES

POSS. TREE CHANGES

LINE UPDATES
UPDATE PACKETS
AVERAGE QUEUE
MAX QUEUE

Bolg Beranek and Newman Inc.

49980
1033
118
21

29
33913
9
5240
1940
11508
4986
0.01965503
2

FRAZTION OF DELAY CHANGES = 0.455335408
FRACTION POSS. CHANGES IN TREE = 0.168578378

LINES PER PACKET

45, MOFFETT

DUPL CURR UPDATES
RCVD SPURIOUS RTS
UPDATES GENERATED
RETRANS 1%
RETRANS 34

DELAY CHANGES

POSS. TREE CHANGES

LINE UPDATES
UPDATE PACKETS
AVERAGE QUEUE
MAX QUEUE

2.308062553

5129
40

94

7

6
5245
1949
11517
4992
0.02944711
2

FRACTION OF DELAY CHANGES = 0.455413728
FRACTION POSS. CHANGES IN TREE = 0.169228091

LINES PER PACKET = 2.307091236

-111 =

Report No. 4088 Bolt Beranek and Newman Inc. {

34. LBL

DUPL CURR UPDATES 10302

RCVD SPURIOQUS RTS 129

UPDATES GENERATED 98

RETRANS 21 17

RETRANS 4 51

RETRANS 45 1

DELAY CHANGES 5257 §
POSS. TREE CHANGES 1911 .
LINE UPDATES 11574

UPDATE PACKETS 5016

AVERAGE QUEUE

0.03189792
MAX QUEUE 2
FRACTION OF DELAY CHANGES = 0.454207703
FRACTION POSSE. CHANGES IN TREE = 0.165111452
LINES PER PACKET = 2.307416200

21. LLL

DUPL CURR UPDATES 5180 1
RCVD SPURIOUS RTS 4y !
UPDATES GENERATED 94 -
RETRANS 2 9

RETRANS 34 13 !
DELAY CHANGES 5268 .
POSS. TREE CHANGES 1836

LINE UPDATES 11608 :
UPDATE PACKETS 5031 :
AVERAGE QUEUE 0.02663486

MAX QUEUE 3

FRACTION OF DELAY CHANGES = 0..453824937 ?
FRACTION POSS. CHANGES IN TREE = 0.158166781 -
LINES PER PACKET = 2.307294726

¥ s oy

o ey

g b

[Y

- 112 -

e L ’ ' B == N v

Report No. 4088

16. AMES16

DUPL CURR UPDATES
RCVD SPURIOUS RTS
UPDATES GENERATED
RETRANS 15
RETRANS 51

DELAY CHANGES
POSS. TREE CHANGES
LINE UPDATES
UPDATE PACKETS
AVERAGE QUEUE

MAX QUEUE

T S R YT R T R e S N R R T

Bolt Beranek and Newman Inec.

5173

48

92

26

6

5273

1890

11626

5039
0.03076007

2
FRACTION OF DELAY CHANGES = 0.453552380
FRACTION POSS. CHANGES IN TREE = 0.162566654
LINES PER PACKET = 2.307203769

51. SRI51

DUPL CURR UPDATES
RCVD SPURIOUS RTS
UPDATES GENERATED
RETRANS 16
RETRANS 2

DELAY CHANGES
POSS. TREE CHANGES
LINE UPDATES
UPDATE PACKETS
AVERAGE QUEUE

MAX QUEUE

LINES PER PACKET =

0.02716636

3
FRACTION OF DELAY CHANGES = 0.453826308
FRACTION POSS. CHANGES IN TKEE = 0.156491830
2.306166887

- 113 -

e R TeARFOTEALS SETA S ST S TR B R T SRR A

Report No. 4088 Bolt Beranek and Newman Inc.

2. SRI2

DUPL CURR UPDATES . 10311 g

RCVD SPURIOUS RTS 84 B
UPDATES GENERATED 89 N
RETRANS 51 11 ‘o
RETRANS 32 11 ‘.
RETRANS 21 27

DELAY CHANGES 5283

POSS. TREE CHANGES 1767

LINE UPDATES 11671

UPDATE PACKETS 5059 ;

AVERAGE QUEUE o 01858074 5

MAX QUEUE

FRACTION OF DELAY CHANGES = 0. 452660426
FRACTION POSS. CHANGES IN TREE = 0.1514G60901
LINES PER PACKET = 2.306977629

s e n

32. XEROX L
DUPL CURR UPDATES 5255

RCVD SPURIOUS RTS 53

UPDATES GENERATED 90

RETRANS 2 47

RETRANS 43 1

DELAY CHANGES 5292

POSS. TREE CHANGES 1744

LINE UPDATES M7
UPDATE PACKETS 5077
AVERAGE QUEUE 0.03210557
MAX QUEUE 2

FRACTION OF DELAY CHANGES = 0.451882839 i
FRACTION POSS. CdAANGES IN TREE = 0.148919813
LINES PER PACKET = 2.306677103

At § L

Gy iy

S

é!

- 114 -

P

¢

B
1

[

grovi

b ot A 2 A
e g

Report No. H4088

56, SUMEX

DUPL CURR UPDATES 5229
RCVD SFURIOUS RTS
UPDAYES GEWEZATED
RETRANS 43

RETRANS i1

DELAY CHANGES
P03S. TREE CHAKGES
LINE UPDATES
UPDATE PACKETS
AVERAGE QUEUE 574493

MAX QUEUE :

FRACTION OF DELAY CHANCES = (.4522U48d56
FRACTION FO3S. CHANGES IN TREE = 0.158447662
LINES PER PACKET = 2.3G0605207%

[Tl
1

3

PO = I W o o \ R I W
-

Q00 A
et st ek g A

VD O b UG s L2

43. TYMSHA4RE

DUPL CURR UPDATES 1G386
RCVD SPURIOUS RTS &3
UPDATES GENERATED 78
RETRANS 22 42
RETRANS 33 i1
RETRANS 56 3C
DELAY CHANGES 5302
POSS. TREE CHANGES 1707
LINE UPDATES 11733
UPDATE PACKETS 5089
AVERAGE QUELE 0.71434466
MAX QUEUE 2

[
FRACTION OF DELAY CHAFGES = 0.451887831
FRACTION P0S5. CHANGES IN TREE = 0.145487084
LINES PER PACKET = 2.305560046

- 115 =

Bolt Beranek and Newman Inc.

b

e

je—p——

Report No. 4088

11. STANFORD

DUPL CURR UPDATES

RCVD SPURIOQUS RTS

UPDATES GENERATED

RETRANS 15

RETRANS 22

RETRANS 56

DELAY CHANGES

POSS. TREE CHANGES

LINE UPDATES

UPDATE PACKETS

AVERAGE QUEUE

MAX QUEUE .

FRACTION OF DELAY CHANGES = 0.
FRACTION POSS. CHANGES IN TREE
LINES PER PACKET = 2.305859327

22. ISI22

DUPL CURR UPDATES
RCVD SPURIOUS RTS
UPDATES GENERATED
RETRANS 11

RETRANS 48

RETRANS 52

DELAY CHANGES
POSS. TREE CHANGES
LINE UPDATES
UPDATE PACKETS
AVERAGE QUEUE

MAX QUEUE

FRACTION OF DELAY CHANGES = 0.

e e e e

e

Bolt Beranek and Newman Inc,

10569

59

98

49

159

11

5310

2010

11806

5120
0.04472656
2
449771299
= 0.170252412

10865

211

98

35

31

277

5328

2041
11831
5130
0.01968810
2
450342312

FRACTION POSS. CHANGES IN TREE = 0.172512888

LINES PER PACKET = 2.306237697

- 116

Report No; 4088

35. ACCAT

DUPL CURR UPDATES 155
= RCVD SPURIOUS RTS 87
=2 UPDATES GENERATED 68
= DELAY CHANGES 5336
: POSS. TREE CHANGES 2029
LINE UPDATES 11854
UPDATE PACKETS 5141
AVERAGE QUEUE 0.03676327

sl

s s
A4 Gl TR AR A
e

MAX QUEUE

3
FRACTION OF DELAY CHANGES = 0.450143396
FRACTION POSS. CHANGES IN TREE = 0.171165846

LINES PER PACKET = 2.305777072

= 52. ISI52

- DUPL CURR UPDATES 10536

1 RCVD SPURIOUS RTS 41

E% UPDATES GENERATED 92

4 RETRANS 7 29

%g RETRANS 22 16

= RETRANS 35 87

= DELAY CHANGES 5345

h POSS. TREE CHANGES 2017

E LINE UPDATES 11894
UPDATE PACKETS 5160
AVERAGE QUEUE 0.02403100
MAY QUEUE 2

FRACTION OF DELAY CHANGES = 0.449386239

FRACTION POSS. CHANGES IN TREE
LINES PER PACKET = 2.305038690

= 0.169581294

- 117 -

Report No. 4088 . Bolt Beranek and Newman Inc.

= 7. RAND
1 DUPL CURR UPDATES 5361
= RCVD SPURIOUS RTS 67
UPDATES GENERATED 89
§§ RETRANS 23 23
= RETRANS 52 14
=] DELAY CHANGES 5351
= POSS. TREE CHANGES 1933
%% LINE UPDATES 11932
UPDATE PACKETS 5176
] AVERAGE QUEUE €.03265069
= MAX QUEUE 2
= FRACTION OF DELAY CHANGES = 0.448457926
, FRACTION POSS, CHANGES IN TREE = 0.162001334
§§ LINES PER PACKET = 2.305254936
-
% 23. USC
DUPL CURR U'PDATES 5355
= RCVD SPURICUS RTS 45
§% UPDATES GENERATED 86
= RETRANS 7 38
% RETRANS 1 10
£l DELAY CHANGES 5357
POSS. TREE CAANGES 1821
= LINE UPDATES 11951
f UPDATE PACKETS 5185
AVERAGE QUEUE 0.03529411

MAX QUEUE 3

FRACTION OF DELAY CHANGES = 0.448247000
FRACTION POSS. CHANGES IN TREE = 0.152372181
LINES PER PACKET = 2.304917931

- 118 -

L A———

pR—

e

[P

R

prasmes vy
| Q——

| sbweic B wosnsut BN W |

Report No. 4088 Bolt Beranek and Newman Inc.

1. UCLA

DUPL CURR UPDATES 5569

RCVD SPURIOQUS RTS 266
UPDATES GENERATED 84

RETRANS 23 22

RETRANS 33 15

DELAY CHANGES 5358

POSS. TREE CHANGES 1706

LINE UPDATES 11958
UPDATE PACKETS 5187
AVERAGE QUEUE 0.02024291
MAX QUEUE 2

FRACTION OF DELAY CHANGES = 0.448068231
FRACTION POSS. CHANGES IN TREE = 0.142665997
LINES PER PACKET = 2.305378794

33. NPS

DUPL CURR UPDATES 11692

RCVD SPURIOUS RTS 631
UPDATES GENERATED 79

RETRANS 43 59

RETRANS 1 256
RETRANS 59 323

DELAY CHANGES 5363

POSS. TREE CHANGES 1665

LINE UPDATES 11973
UPDATE PACKETS 5194
AVERAGE QUEUE 0.03754331

MAX QUEUE

3
FRACTION OF DELAY CHANGES = 0.447924494

FRACTION POSS. CHANGES IN TREE
LINES PER PACKET = 2.305159687

= 0.139062888

- 119 -

Report No. 4038

48, AFWL

DUPL CURR UPDATES
RCVD SPURIOUS RTS
UPDATES GENERATED
RETRANS 22
RETRANS 62

DELAY CHANGES
POSS. TREE CHANGES
LINE UPDATES
UPDATE PACKETS
AVERAGE QUEUE

MAX QUEUE

Bolt Beranek and Newman Inc.

5861
304
90

36
225
5372
2079
12024
5218
0.03583748
3

FRACTION OF DELAY CHANGES = 0.446773111
FRACTION POSS. CHANGES IN TREE = 0.172904185

LINES PER PACKET =

4, UTAH

DUPL CURR UPDATES
RCVD SPURIOUS RTS
UPDATES GENERATED
RETRANS 34
RETRANS 25

DELAY CHANGES
POSS. TREE CHANGES
LINE UPDATES
UPDATE PACKETS
AVERAGE QUEUE

MAX QUEUE

2.304331064

5693
200
88
110
72
5376
2029
12041
5225
0.03502392
2

FRACTION OF DELAY CHANGES = 0.446474537
FRACTION POSS. CHANGES IN TREE = 0.168507598
LINES PER PACKET = 2.304497599

- 120 -

¥ H
 pr——t]

S

Report No. 4088

25. DOCB

DUPL CURR UPDATES
RCVD SPURIOUS RTS
UPDATES GENERATED
RETRANS 4

RETRANS 24

DELAY CHANGES
POSS. TREE CHANGES
LINE UPDATES
UPDATE PACKETS
AVERAGE QUEUE

MAX QUEUE

ST T et LEERETE IR ¥ P e £ IR L A

Bolt Beranek and Newman Inc.

5763
238
84
150
70
5381
2033
12070
5237
0.03532556
2

FRACTION OF DELAY CHANGES = 0.445816069
FRACTION POSS. CHANGES IN TREE = 0.168434128
LINES PER PACKET = 2.304754614

24, GwWC

DUPL CURR UPDATES
RCVD SPURIOUS RTS
UPDATES GENERATED
RETRANS 12
RETRANS 25

DELAY CHANGES
POSS. TREE CHANGES
LINE UPDATES
UPDATE PACKETS
AVERAGE QUEUE

MAX QUEUE

5705
184
88

35
169
5389
1879
12080
5241
0.03186%14
2

FRACTION OF DELAY CHANGES = 0.446109265
FRACTION POSS. CHANGES IN TREE = 0.155546352
LINES PER PACKET = 2.304903626

- 121 -

Report No. 408§

62. TEXAS

DUPL CURR UPDATES
RCVD SPURIOUS RTS
UPDATES GENERATED
RETRANS 13
RETRANS 48

DELAY CHANGES
POSS. TREE CHANGES
LINE UPDATES
UPDATE PACKETS
AVERAGE QUEUE

MAX QUEUE

Belt Beranek and Newman Inc.

5600
250
84

15

25
5400
2056
12118
5260
0.01806083
2

FRACTION OF DELAY CHANGES = 0.445618078
FRACTION POSS. CHANGES IN TREE = 0.169664956

LINES PER PACKET = 2.303802251

13. GUNTER

DUPL CURR UPDATES
RCVD SPURIOUS RTS
UPDATES GENERATED
RETRANS 62
RETRANS 53
RETRANS 17

DELAY CHANGES
POSS. TREE CHANGES
LINE UPDATES
UPDATE PACKETS
AVERAGE QUEUE

MAX QUEUE

8111
219
157
34

87

55
5411
2623
12154
5276
0.05079605
3

FRACTION OF DELAY CHANGES = 0.4145203214

FRACTION PCSS. CHANGES IN TREE
LINES PER PACKET = 2.303639054

= 0.215813718

- 122 -

y- w—— e nmmierren
1 L

o |

P Sy V1)

1

SIS EwITEho) L ATREATT O i o T D

b —————————
-
e

Report No. 4088) Bolt Beranek and Newman Inc.
N
53. EGLIN
DUPL CURR UPDATES . 5726
RCVD SPURIOUS RTS 185
UPDATES GENERATED 152
. RETRANS 13 10
RETRANS 38 105
DELAY CHANGES 5423
POSS. TREE CHANGES 2616
LINE UPDATES 12186
UPDATE PACKETS 5290
AVERAGE QUEUE 0.03440453
MAX QUEUE 2

FRACTION OF DELAY CHANGES = 0.445018872
FRACTION POSS. CHANGES IN TREE = 0.214672572
LINES PER PACKET = 2.303591609

28. ARPA
DUPL CURR UPDATES 179
RCVD SPURIOUS RTS 84
UPDATES GENERATED 95
DELAY CHANGES 5434
POSS. TREE CHANGES 2554
| LINE UPDATES 12232
, UPDATE PACKETS 5312
- AVERAGE QUEUE 0.04442770
L MAX QUEUE 2

FRACTION OF DELAY CHANGES = O.444284573
- FRACTION POSS. CHANGES IN TREE = 0.208796598
! LINES PER PACKET = 2.302710771

I A AN

YR

ol iy}

fesm——
Cumpsconi

- 123 -

]

{

Tt R Y T e T e e
R e > e 0
T T P RV ¥ A TR y e e
PR o . b
.
e Mmmwmmm&%@ﬂﬁm? okl

Report No. 4088

17. MITRE

DUPL. CURR UPLATES
RCVD SPURIOQUS RTS
UPDATES GENERATED
RETRANS 13
RETRANS 19
RETRANS 28

DELAY CHANGES
POSS. TREE CHANGES
LINE UPDATES
UPDATE PACKETS
AVERAGE QUEUE

MAX QUEUE

FRACTION OF DELAY CHANGES

Bclp Beranek

5322
0.04998120

3
0.443873375

FRACTION POSS. CHANGES IN TREE = 0.205172128

LINES PER PACKET = 2.303269386

38. BRAGG

DUPL CURR UPDATES
RCVD SPURIOQUS RTS
UPDATES GENERATED
RETRANS 26
RETRANS 53

DELAY CHANGES
POSS. TREE CHANGES
LINE UPDATES
UPDATE PACKETS
AVERAGE QUEUE

MAX QUEUE

5817
230
152
1

97
5452
2604
12290
5336
0.05284857
3

FRACTION OF DELAY CHANGES = 0.443612679

FRACTION POSS. CHANGES IN TREE
2.303223371

LINES PER PACKET =

= 0.211879573

- 124 -

and Newman Inc.

I it

Lol

PERELTYS

Report No. 4088

26. PENTAGON

DUPL CURR UPDATES
RCVD SPURIOUS RTS
UPDATES GENERATED
RETRANS 38
RETRANS 19

DELAY CHANCES
POSS. TREE CHANGES
LINE UPDATES
UPDATE PACKETS
AVERAGE QUEUE

#iX QUEUE

Bolt Beranek and Néwman Inc.

5668
80
124
123

2

5462

2495

12329

5354
0.04650728
2

FRACTION OF DELAY C'IANGES = 0.4430205Q7
FRACTION POSS. CHANGES IN TREE = $.202363393

LINES PER PACKET = 2.302764177

19. NBS

DUPL CURR UJPDATES
RCVD SPURIOUS RTS
UPDATES GENERATED
RETRANS 17
RETRANS 29
RETRANS 26

DELAY CHANGES
FOSS. TREE CHANGES
LINE UPDATES
UPDATE PACKET3
AVERAGE QUEUE

MAX QUEUE

69

5476

2388

12348

5363
0.04586984
2

FRACTION OF DELAY CHANGES = 0.443472623

FRACTION POSS. CHANGES IN TREE
2.302442550

LINES PER PACKET =

= 0.193391836

-~ 125 -

.’%“

I

R AL

Report No. 4088

12. DTI

DUPL CURR UPDATES
RCVD SPURIQUS RTS
UPDATES GENERATED
RETRANS 59
RETRANS 24
RETRANS 55

DELAY CHANGES
POSS. TREE CHANGES
LINE UPDATES
UPDATE PACKETS
AVERAGE QUEUE

MAL QUEUE

Bolt Beranek and Newman Inc.

11105
98
110
11
122
30
5476
1829
12367
5371
0.01582573
2

FRACTION OF DELAY CHANGES = 0.442791298

FRACTION POSS. {WANGES IN TREE
LINES PER PACKET > 2.302550673

55. ANL

DUPL CURR UPDATES
RCYD SPURIOUS RTS
UPDATES GENERATED
RETRANS 47
RETRANS 12

DELAY CHANGES
POSS. TREE CHANGES
LINE UPDATES
UPDATE PACKETS
AVERAGE QUEUE

MAX QUEUE

= C.147893585

5691
94
107
96

23
5482
1636
12384
5378
0.02975C83
2

FRACTION OF DELAY CHANGES = 0.442667946
FRACTION POSS. CHANGES IN TREE = 0.156330741

LINES PER PACKET = 2.302714705

~ 126 -

P

yep———

prosemmony
[

fromiavay
[E—

L —
. :
[rpe—

fn b kg

¢
[———

-

iy
| —

LU =

£

(Hlp

AT

B

AR R

Sl

Report No. 4088

47. WPAFB

DUPL CURR UPDATES
RCVD SPURIOUS RTS
UPDATES GENERATED
RETRANS 14
RETRANS 55

DELAY CHANGES

POSS. TREE CHANGES

LINE UPDATES
UPDATE PACKETS
AVERAGE QUEUE
MAX QUEUE

S e b e T

Bolt Beranek and Newman Inc.

5390
0.C3302411
2

FRACTION OF DELAY CHANGES = 0.3442340224
FRACTION POSS. CHANGES TN TREE = 0,163671523

LINES PER PACKET

14, CMU

DUPL CURR UPDATES
RCVD SPURIOUS RTS
UPDATES GENERATED
RETRANS 47
RETRANS 50
RETRANS 18

DELAY CHANGES

POSS. TREE CHANGES

LINE UPDATES
UPDATE PACKETS
AVERAGE QUEUE
MAX Q'V.UE

2.302226305

11134
114
128
33

18
47

5497

2089

12429

5401
0.01870024
2

FRACTION OF DELAY CHANGES = 0.442272096

FRACTION POSS. CHANGES IN TREE
LINES PER PACKET = 2.301240444

= 0.168074660

- 127 -

S T IS W LR T T

R R R R IS o

Report No. 4088

Bolt Beranek and Newman Inc.

18. RADC

DUPL CURR UPDATES 5665
RCVD SPURIOUS RTS 84
UPDATES GENERATED 109
RETRANS 10 K7
RETRANS 14 25
DELAY CHANGES 5508
POSS. TREE CHANGES 1992
LINE UPDATES 12459
UPDATE PACKETS 5412
AVERAGE QUEUE 0.03215077
MAX QUEUE 2

FRACTION OF DELAY CHANGES = 0.442090049
FRACTION POSS. CHANGES IN TREE = 0.159884415
LINES PER PACKET = 2.302106380

10. LINCOLN

DUPL CURR UPDATES 11086
RCVD SPURIOUS RTS 62
UPDATES GENERATED 102
RETRANS &4 4y
RETRANS 18 37
RETRANS 37 11
DELAY CHANGES 5511
POSS. TREE CHANGES 1832
LINE UPDATES 12485
UPDATE PACKETS 5423
AVERAGE QUEUE 0.01512078

MAX QUEUE

1

FRACTION OF DELAY CHANGES = 0.441409677
FRACTION POSS. CHANGES IN TREE = 0.146736077

LINES PER PACKET = 2.302231192

- 128 -

Report No. 4088) Bolt Beranek and Newman Inec.

44, MIT44
DUPL CURR UPDATES 5584
RCVD SPURIOUS RTS 4y
g UPDATES GENERATED 79
: RETRANS 6 36
=3 DELAY CHANGES 5513
! POSS. TREE CHANGES 1859
. LINE UPDATES 12497
A UPDATE PACKETS 5428
AVERAGE QUEUE 0.03389830
2

i MAX QUEUE

= - FRACTION OF DELAY CHANGES = 0.441145867
FRACTION POSS. CHANGES IN TREE = 0.148755699
LINES PER PACKET = 2.302321195

6. MIT6

DUPL CURR UPDATES 108
RCVD SPURIOUS RTS 36
UPDATES GENERATED 72
DELAY CHANGES 5519
POSS. TREE CHANGES 1857
LINE UPDATES 12525
UPDATE PACKETS 5441

AVERAGE QUEUE

0.02297371
- MAX QUEUE 1
o FRACTION OF DELAY CHANGES = 0.440638720
' FRACTION POSS. CHANGES IN TREE = 0.148263469
LINES PER PACKET = 2.301966547

—

-

e &

-

L

LTI Y

Bk
3

- 12'9 -

: Jr%
e AN

e,

R e e Tt I il e D Ty
e phile e "R IR e, T 2 TR BN TATRSAY T I The T s = e
= = SR ALY Y S P e TR = T

Report No. 4088

20. DCEC

DUPL CURR UPDATES
RCVD SPURIOUS RTS
UPDATES GENERATED
DELAY CHANGES
POSS. TREE CHANGES
LINE UPDATES
UPDATE PACKETS
AVERAGE QUEUE

MAX QUEUE

Bolt Beranek

208

111

97

5525

2290

12539

5450
0.036€9724
2

FRACTION OF DELAY CHANGES = 0.440625235

FRACTION POSS. CHANGES IN TREE = 0.182630188

LINES PER PACKET = 2.300733923

50. DARCOM

DUPL CURR UPDATES
RCVD SPURIOUS RTS
UPDATES GENERATED
RETRANS 14
RETRANS 29
RETRANS 20

DELAY CHANGES
POSS. TREE CHANGES
LINE UPDATES
UPDATE PACKETS
AVERAGE QUEUE

MAX QUEUE

11205
27
134
23

11
111
5534
2263
12578
5466
0.04024880C
2

FRACTION OF DELAY CHANGES = 0.U4399Tu4546

FRACTION POSS. CHANGES IN TREE = 0.179917313
2.301134228

LINES PER PACKET =

- 130 -

ana Newman Inc.

o n

g —

o,

——

Pl

Banteaed ¥

b W)

AR

[ciies g

|

A T M e T S L AT TR L R e e T N R R
e T = -1 GREaa SES s

Report No. 4088

29 . ABERDEEN

DUPL CURR UPDATES

RCVD SPURIOUS RTS

UPDATES GENERATED

RETRANS 46

RETRANS 19

RETRANS 50

DELAY CHANGES

POSS. TREE CHANGES

LINE UPDATES

UPDATE PACKETS

AVERAGE QUEUE

MAX QUEUE

FRACTION OF DELAY CHANGES = 0.
FRACTION POSS. CHANGES IN TREE
LINES PER PACKET = 2.301312327

46. RUTGERS

DUPL CURR UPDATES

RCVD SPURIOUS RTS

UPDATES GENERATED

RETRANS 29

RETRANS 60

DELAY CHANGES

PO3S. TREE CHANGES

LINE UPDATES

UPDATE PACKETS

AVERAGE QUEUE

MAX QUEUE

FRACTION OF DELAY CHANGES = 0.
FRACTION POSS. CHANGES IN TREE
LINES PER PACKET = 2.300582170

- 131

0.01239518

1

439128711
0.181386135

5705
62
110
30

17
5551
2144
12644
5496
0.03074963
2

439022451
0.169566586

el AR A LT T T T VLT e T AT LT T TR R DEARIE L, Eh T
™ A R SRR T AR T B T

Bolt Beranek and Newman Inc. !

80. CORADCOM

DUPL CURR UPDATES : 5707 '
RCVD SPURIOUS RTS 46 |
UPDATES GENERATED 123

RETRANS 46 32

RETRANS 58 11

DELAY CHANGES 5557

POSS. TREE CHANGES 1957

LINE UPDATES 12660

UPDATE PACKETS 5502

AVERAGE QUEUE 0.02653580

MAX QUEUE >

FRACTION OF DELAY CHANGES = 0.438941538
FRACTION POSS. CHANGES IN TREE = 0.154581353
LINES PER PACKET = 2.300981402

58. NYU

DUPL CURR UPDATES 5759
RCVD SPURIOUS RTS 85
UPDATES GENERATED 128
RETRANS 9 17
RETRANS 60 29
DELAY CHANGES 5565
POSS. TREE CHANGES 1725
LINE UPDATES 12685
UPDATE PACKETS 5513
AVERAGE QUEUE 0.02122256

MAX QUEUE 2

FRACTION OF DELAY CHANGES = 0.438707128
FRACTION POSS. CHANGES IN TREE = 0.135987386
LINES PER PACKET = 2.300925016

- 132 -

P Y _;zr‘s%;{z_,;&‘;%g\

- g s g SIS ST A AT
et R A TRET A, T o8 R Sayt T TH T AT L T 2 AR R AT AT

o .. VT i e R, ~ Lo s gy oA 3 - g Eie" T e
R R N B S S R T R
a7 T FEANC AT =3 : %

e

r‘.u..m, N
L ES——.

Report No. 4088

37. DEC

DUPL CURR UPDATES
RCVD SPURICUS RTS
UPDATES GENERATED
RETRANS 10

RETRANS 9

DELAY CHANGES
POSS. TREE CHANGES
LINE UPDATES
UPDATE PACKETS
AVERAGE QUEUE

MAX QUEUE

FRACTION OF DELAY CHANGES = 0.

LINES PER PACKET = 2.300995469

59. SCOTT

DUPL CURR UPDATES

RCVD SPURIOUS RTS

UPDATES GENERATED

RETRANS 12

RETRANS 9

RETRANS 33

DELAY CHANGES

POSS. TREE CHANGES

LINE UPDATES

UPDATE PACKETS

: AVERAGE QUEUE

| MAX QUEUE

FRACTION OF DELAY CHANGES = O.
FRACTION PUSS. CHANGES IN TREE
LINES PER PACKET = 2.300758600

-
(V3)
L)

FRACTION POSS. CHANGES IN TREE

Bolt Beranek and Newman Inc.

5700

58

105

15

5

5573

1659

12713

5525
0.01520361
1
438370168
0.130496338

12459

504

105

41

135

642

5579

1639

12737

5236
0.02366329
2
438015222
0.128680221

T TS R BT TN e SRR ST D T TN SN ER T S e T N et e e TR T A P e f 3 T R I B G T B PR T SRR P S S A TSRS

Report No. 4088 Bolt Beranek and Newmar Inc.

9. HARVARD

DUPL CURR UPDATFS 17132
RCVD SPURIOUS RTS 150
UPDATES GENERATED 98
RETRANS 40 26
RETRANS 58 75
RETRANS 37 47
RETRANS 59 150

DELAY CHANGES 5584

POSS. TREE CHANGES 1482

LINE UPDATES 12750
UPDATE PACKETS 5542
AVERAGE QUEUE 0.02959220

MAX QUEUE 2

FRACTION OF DELAY CHANGES = 0.437960773
FRACTION POSS. CHANGES IN TREE = 0.116235293
LINES PER PACKET = 2.300613403

: 63. BBN63
DUPL CURR UPDATES 208
RCVD SPURIOUS RTS 133
UPDATES GENERATED T4
RETRANS 40 1
DELAY CHANGES 5586
POSS. TREE CHANGES 1423
LINE UPDATES 12769
UPDATE PACKETS 5550
AVEZRAGE QUEUE 0.01675675
MAX QUEUE 1

FRACTION OF DELAY CHANGES = 0.437465727
FRACTION POSS. CHANGES IN TREE = 0.111441772
LINES PER PACKET = 2.300720691

- 134 -

=T RN om RTRATRL T Ce MR LR PRSP T TEL L v Ty 0 Teas Tame el SRmL SR T e AN sy T ey 2 T e T

Report No. 4088

40. BBN4O

DUPL CURR UPDATES 11353
RCVD SPURIOUS RTS 22
UPDATES GENERATED 78
RETRANS 49 23
RETRANS 9 1
RETRANS 63 133
DELAY CHANGES 5594
POSS. TREE CHANGES 1419
LINE UPDATES 12783
UPDATE PACKETS 5556
AVERAGE QUEUE 0.03779697
MAX QUEUE

5
FRACTION OF DELAY CHANGES = 0.437612444
FRACTION POSS. CHANGES IN TREE = 0.111006803
LINES PER PACKET = 2.300755858

49, RCC49

DUPL CURR UPDATES 5656
RCVD SPURXIOUS RTS 19
UPDATES GENERATED 72
RETRANS 5 124
DELAY CHANGES 5596
POSS. TREE CHANGES 1396
LINE UPDATES 12791
UPDATE PACKETS 5559
AVERAGE QUEUE 0.03004137
MAX QUEUE 2

FRACTION OF DELAY CHANGES = 0.437495112
FRACTION POSS. CHANGES IN TREE = 0.109139237
LINES PER PACKET = 2.300953368

- 135 =

v mrn T S QR AT o
s o T R T e A A MR . T i whs RO

Report No. 4088 _ Bolt Beranek and Newman Inec.

5. RCC5

DUPL CURR UPDATES 196
RCVD SPURIOUS RTS 123
UPDATES GENERATED 73
RETRANS 49 1
DELAY CHANGES 5602
POSS. TREE CHANGES 1403
LINE UPDATES 12805
UPDATE PACKETS 5566
AVERAGE QUEUE 0.02317642
MAX QUEUE 1

FRACTION OF DELAY CHANGES = 0.437485352
FRACTION POSS. CHANGES IN TREE = 0.109566573
LINES PER PACKET = 2.300574898

PR

§

- 136 =

fo e e T T e NG E e TGRSR T meR ST R Zens AT O P TIN Rf T S S ek B TR T PR LSRN

Report No. 4088 _ Bolt Beranek and Newman Inc.

APPENDIX 2 -~ TRAFFIC TESTS

This appendix contains the results of 5 experiments
performed on 1/4/79. The experiments are discussed in chapter 6.
In all of these experiments, node 64 was sending 20 packets per
second to node 59, with each packet containing 1192 bits. HNode
59 was set to refuse to acknowledge a certain fraction of the
traffic a:rriving from node 64. Modes 56 and 43 sent tagged
packets to node 9.

a) In this experiment, node 43 sent 10 packets per second to node
9, with each packet containing 1192 bits. Node 59 was set to

reject 80% of the traffic arriving from node 64.
SOURCE: 43 COUNT: 1836 DELAY: 317.51 MS.

3 PATH: 43=32- 2-21-34- 4-25-24=12-59- 9
b COUNT: 879 DELAY: 312.30 48%

PATH: 43-56-11-22-48-62-13-17-19-29-46-58~ 9
COUNT: 801 DELAY: 316.80 44%

s pes
[I

PR
it

{

PATH: 43-56-11-22-U48-62~13-53-38-26~19-29-46-58~ 9
COUNT: 75 DELAY: 356.07 4%

PATH: 43-56-11-15-45-34~ 4-25-24-12-59- 9
COUNT: 80 DELAY: 342.64 bz

PATH: 43-32~ 2-51-16-15-45-34~ 4~25-24-12-59- 9
COUNT: 1 DELAY: 423.20 0%

PERCENTAGE OF LOOPING PACKETS = 0.00%
AVERAGE PATH LENGTH =11.08 HOPS

- 137 =

=

el
SEAY
co s

%,

SV

RN TTE S

FAS

3
B

NNy

Bt

e

PR

ST

P

et LR i e e

TR

TSR

v RN ST ol A NEL AR

DA RTINS AR
ST

=

Report No. 4088

|-2y 24n814

6L-9°4-21

LINVdSY

Bolt Beranek and Newman Inc.

S

[
[
[#]

A

1]

dlL

HOA

1NY1S.4

™0
YNOLS O .,

¥ Ny
ARIBIN dv S04

T oy

- 138 =~

Report No. 4088 . Bolt Beranek and Newman Inc.

b) In this ex)eriment, node 43 sent 10 packets per second to node
9, and node 59 was set to reject 67% of the traffic arriving from
node 64.

SOURCE: 43 COUNT: 2010 DELAY: 499.68 MS.

PATH: 43-6L=59~ 9
COUNT: 557 DELAY:1103.97 28%

PATH: 43-32- 2-21-34- U4-25-24-12-59- 9
COUNT: 772 DELAY: 247.20 38%

PATH: 43=56-11-15=45=3l4= 4-25-24-12-59=- G
COUNT: 320 DELAY: 272.36 16%

PATH: 43-56-11-22-48-62-13-17-19-29-46-58- §
COUNT: 324 DELAY: 3u3.74 16%

il PATH: 43-56=11-22-48-62~13-53=38-26-19~29-46-58~ 9
COUNT: 36 DELAY: 347.82 2%

o8
ol kO
S0 R
e e
| PT———

PATH: 43-32- 2-32-43-64-59- 9
COUNT: 1 DELAY: 522.40LOOF 0%

—

PERCENTAGE OF LOOPING PACKETS = 0.05%
AVERAGE PATH LENGTH = 8.61 HOPS

¥ punny
p—

H

b
eS|

Wﬂwx
Frioh woe B

et

- 139 -

,,,,,,,, —— = — A ST A G o B Ter

R
il

!l
i

: ”%int’ll"% ‘

L'mn!wgw‘i;mo o

ey

i EALRATLL

e e L s

Report No. 4088

Bolt Beranek and Newman

¢) In this experiment, node 43 sent 20 packets per second %o

9, and node 59-was set to reject 80% of the traffic arriving

node 64,

SOURCE:

43

PATH:

PATH:

PATH:

PATH:

PATH:

PATH:

PATH:

PATH:

COUNT: 3796 DELAY: 422.02 MS.

§3-64«59- 9
COUNT: 84 DELLY:2140.69 2%

43-32- 2-21=34- 4-25.24-12-59. 9
COUNT. 1192 DELAY: 387.08 31%

43-56w]1=15-U45=34= 4=25~2U4~72=59=~ Q
COUNT: 573 DELAY: 386.76 15%

43-56=11-22<48-62-~13-17=-19=-29=46-58~ 9
COUNT: 1310 DELAY: 358.25 34%

43-56=11-22~48-62~13-53-38-26~19-29~46-58~- §
COUNT: 525 DELAY: #409.79 4%

B3-64=33- 1223~ T-52-22-48-62~13-17-19-29~
46-58- 9
COUNT: 82 DELAY: 505.93 2%

43-32~ 2-51=16=15=U5=34= 4=25-24=12-59~ 9
COUNT: 29 DELAY: 440.19 1%

43-32~ 2-51-16~15-11-22-48-62-13~17-19=-29~
4€-58- 9
COUNT: 3 DELAY: #433.60 0%

PERCENTAGE OF LOOPING PACKETS = 0.00%
AVERAGE PATH LENGTH =11.40 HOPS

- 140 -

Inc.

node

from

e

{

o sy

-

R R e e B e e A R G P TS R TR RS R

Report No. 4088 Bolt Beranek and Newman Inc.

d) In this experiment, node 43 sent 20 packets per second to node

9, and node 59 was set to reject 67% of the traffic arriving from

node 64.
SOURCE: 43 COUNT: 4151 DELAY: 531.07 MsS.
PATH: 43-56-11=22~52= T=23- 1-33-64-59- 9
COINT: 79 DELAY:2(15.56 2%
PATH: H3=32« 2=21=34= f-25-24~12-59=-
COUNT: 1751 DELAY: 272.28 42%
PATH: 43=56~11=22=52=22=U48+62=13-1T~19-29-46-58~ 9
COUNT: 1 DELAY: 380.80LOOP 0%
PATH: 43-56=171~22=52~ T=23« T~52-22-48-62-13-17-19-
29-46-58~ 9
COUNMT: 1 DELAY: 480.00LOOP 0%
PATH: 43=56.11-22-52~ T~23= 1=23« 7=52-22-48-62-13~
17-19-29-46-58- 9
COUNT: 4 NDELAY: 913.60L00P 0%
PATH: 43-64-59- C
COUNT: 787 DELAY:1223.50 19%
PATH: 43=56=11=22-48~62-13-17=19=-29-46=-58- 9
COUNT: 1778 DELAY: 367.7¢ 19%
PATH: L3-56-11«15=45e3U- J-2524~12-59- §

8 COUNT: 717 DELAY: 317.14 17%

PATH: 43-32-~ 2-32-43-64-5G. 9
COUNT: 2 DELAY: 6+0.80LOOP 0%

J——
[

PATH: U43-56-17~22~52~ T-23- 7-52-22-48-62-13-53~
38-26-19-29-46-58~ 9

- 141 -

1

I

e

BT

i

i vt

TR W SR L O R SN

Report No. 4088 ' Bolt Beranek and Newman Ine,

COUNT: 8 DELAY:2820.00LOOP 0%

PATH: 43-56-11-22-52~ T-23- 1-23- 7-52-22-48-62~13-
53-38-26~19-29-46~58~ S
COUNT: 7 DELAY:3164.91L0Q0P 0%

PATH: 43-56-11-22-52- T7-52-22-U48-62~13-53~38-26~
19-29-46-58~ 9
COUNT: 1 DELAY:2482 .40L0O0OP 0%

PATH: 43-56-11-22-52- 7-23~ 1-33- 1-23- T-52-22-
48-62-13-53-38-26-19-29-46-58- 9
COUNT: 6 DELAY:3726.40L0O0P 0%

PATH: 43-6U4-43-32~ 2-21-34~ 4-25-24-12-59- 9
COUNT: 8 DELAY:1875.20L00P 0%

PATH: 43-56-11-56-43-64-59- 9
COUNT: i DELAY:1712.80LCOP 0%

PERCENTAGE OF LOOPING PACKETS = 0.94%
AVERAGE PATH LENGTH = 9.32 HOPS

- 142 -

Report No. 4088) Bolt Beranek and Newman Inec.

e) In this experiment, nodes 56 and 43 each sent 10 packets per
second to node 9, and node 59 was set to reject . 80% of the
traffic arriving from node 64.

SOURCE: 43 COUNT: 2673 DELAY: 357.01 MS.

PATH: 43-64-59- 9
COUNT: 4 DELAY:1933.60 0%

PATH: 43-56-11-22-U48-62<13-17-19-29-46-58~ 9
COUNT: 892 DELAY: 378.25 33%

PATH: 43-32- 2-21-34~ 4-25-24-12-59- 9
COUNT: 1572 DELAY: 333.87 59%

PATH: 43-56-11-15-45-34~ U4-25-24-12-50- 9
COUNT: 162 DELAY: 412.83 6%

PATH: 43-56-11-22-U48-62~13-53~38-26-19-29-46-58- 9
COUNT: 43 DELAY: 405.30 2%

PERCENTAGE OF LOOPING PACKETS = 0.00%
AVERAGE PATH LENGTH =10.78 HOPS

- 143 -

Report No. 4088 . Bolt Beranek and Newman. Inc.

SOURCE: 56 COUNT: 2673 DELAY: 352.32 MS.

PATH: 56-11-22-48-62-13-~17-19-29-46-58- 9
COUNT: 1631, DELAY: 325.54 61%

PATH: 56-43-56-11-22-48-62-13-17-19-29-46-58- 9
COUNT: 4 DELAY:5269.60L0OCP 0%

PATH: 56-43-64-59~ 9
COUNT: 3 DELAY:6365.33 0%

PATH: 56-43-32-~ 2-21-34~ 4-25-24-12-59~ 9
COUNT: 89 DELAY: 397.29 3%

PATH: 56-11<15-45-34~ 4-25-24-12-59~ G
CCUNT: 903 DELAY: 353.33 34%

PATH: 56-11-22~48-62-13-53-38-26-19-29=-46-58- 9
COUNT: 43 DELAY: 376.82 2%

PERCENTAGE OF LOOPING PACKETS = 0.15%
AVERAGE PATH LENGTH =10.69 HOPS

TOTAL MESSAGES FROM ALL SOURCES = 5346
PERCENT LOGCPING PACKETS = 0.07%

- 14y -

Report No. 4088 Bolt Beranek and Newman Inc.

AFPENDIX 3 -~ INSTABILITY TESTS

This appendix contains the results of 5 experiments
performed on 11/21/78. The experiments are discussed in chapter
6. They were performed on our lab network, pictured in Figure

A3-1.

Figure A3-1

a) For this experimen:, nodes 60, 61, and 66 each sent 10 packets

per second to node 30. Each packet contained 1192 bits.

- 145 -

RPN P AN A St

R e N

ATEERLET

Report No. 4088

SRS T P SNSRI SRR

Bolt Beranek and Newman Inc.

SQURCE: €0 COUNT: 1331 DELAY: 108.96 MS.
PATH: 60-61-30
COUNT: 525 DELAY: 145.19 39%
PATH: 60-66-30
COUNT: 803 DELAY: T4.86 60%
. PATH: 60~-61-60-66=30
- COUNT: 3 DELAY:2897.07L0OOP 0%
PERCENTAGE OF LOOPING PACKETS = 0.23%
AVERAGE PATH LENGTH = 2.00 HOPS
SOURCE: 61 COUNT: 1317 DELAY: 63.04 MS.
PATH: 61-30
COUNT: 1310 DELAY: 57.30 99%
PATH: $1-60-66-30
COUNT: 7 DELAY:1135.77 1%
PERCENTAGE OF LOOPING PACKETS = 0.00%
AVERACE PATH LENGTH = 1.01 HOPS
- 146 -

el Te e - P L R B Sk Aas e S S S M R e T o el S At g ane e r g as sams e b

Report No. 4088 _ Bolt Beranek and Newman Inc.
SOURCE: 66 COUNT: 1349 DELAY: 55.58 MS.
PATH: 66-30
COUNT: 1339 DELAY: 51.53 99%
PATH: 66-60-61-30
COUNT: 10 DELAY: 598.72 1%
PERCENTAGE OF LOOPING PACKETS = 0.00%
AVERAGE PATH LENGTH = 1.01 HOPS
TOTAL MESSAGES FROM ALL SOQURCES = 3997
PERCENT LOOPING PACKETS = 0.08%
.y
i
;
!}

e e = T TT AT ST G T IR ST TN T S S TS SR S NTTRATRANG CASRR S RO R b J e

Report No. 4088 i Bolt Beranek and Newman Inc,

b) For this experiment, nodes 60, 61, and 66 each sent 20 packets
per second to node 30, Each packets contained 1192 bits.
SOURCE: 60 COUNT: 372 DELAY:1555.02 MS.

PATH: 60-66-30
COUNT: 243 DELAY:1386.86 65%

PATH: 60-61-30
COUNT: 124 DELAY:1841.39 33%

PATH: 60-66-60-61-30
COUNT: 1 DELAY:1913.60L0OP 0%

PATH: 60-61-60-66-30
COUNT: 4 DELAY:2803.20L0OOP 1%

PERCENTAGE OF LOOPING PACKETS = 1.34%
AVERAGE PATH LENGTH = 2.03 HOPS

SOURCE: 61 COUNT: 493 DELAY: 643.88 Ms.

PATH: 61-30
COUNT: 464 DELAY: 563.89 9u4%

3
2
X
z

:

G

PATH: 61-60-66-30
COUNT: 29 DELAY:1923.70 6%

PERCENTAGE OF LOOPING PACKETS = 0.00%
AVERAGE PATH LENGTH = 1.12 HOPS

- 148 -

P S A SO o AV B o T A0 IS AT TANTIRT STSRET0 R T T S TR R Tl NGT AT AN Yo FRELE £ BV
LI R S AT ST R A R e B e R T B R R R R ST

Report No. 4088 . Bolt Beranek and Newman Inec.
SOQURCE: 66 COUNT: 594 DELAY: 438.29 MS.
PATH: 66-30
COUNT: 592 DELAY: 436.79 100%
PATH: 66-60-61-30
. COUNT: 2 DELAY: 881.60 0%
PERCENTAGE OF LOOPING PACKETS = 0.00%
AVERAGE PATH LENGTH = 1.01 HOPS
TOTAL MESSAGES FROM ALL SOURCES = 1459
PERCENT LOOPING PACKETS = 0.34%
i
i
i
i
il
1
- 149 -

G P b 1 T ST ST TR e

Report No. 4088) Bolt Beranek and Newman Inc.

¢) For this experiment, nodes 60 and 66 each sent 1U packets per

second to node 30. Each packet contained 1192 bits.
SOURCE: 60 COUNT: 1197 DELAY: 50.60 Ms.

PATH: 60~66-30
COUNT: 586 DELAY: 52.15%

PATH: 60-61-30
COUNT: 611 DELAY: 49,12

PERCENTAGE OF LOOPING PACKETS = 0.00%
AVERAGE PATH LENGTH = 2.00 HOPS

SOURCE: 66 COUNT: 1192 DELAY: 25.06 MS.

FATH: 66-30
COUNT: 1192 DELAY: 25.06
PERCENTAGE OF LOOPING PACKETS = 0.00%
AVERAGE PATH LENGTH = 1.00 HOPS

TOTAL MESSAGES FROM ALL SOURCES = 2389
PERCENT LOOPING PACKETS = 0.00%

- 150 -

49%

51%

100%

L}

o s vy P vt ot 1

—

frmeanery

r
}
L

St T ST —— P vt i e R T S D Sy e

Report No. 4088) Bolt Beranek and Newman Inc.

d) For this experiment, nodes 60 and 66 each sent 20 packets per
second to node 30. Each packet contained 1192 bits.
SOURCE: 60 COUNT: 885 DELAY: 820.94 Ms.

PATH: 60-66-30
COUNT: 481 DELAY: 729.95 54%

o PATH: 60-61-30
a COUNT: 389 DELAY: 906.83 4ug

PATH: 60-66-60~61~30
" COUNT: 8 DELAY:1148.00L0OOP 1%

PATH: 60-61-60-66-30
COUNT: 7 DELAY:1926.40LO0P 1%

PERCENTAGE OF LOOPING PACKETS = 1.69%
AVERAGE PATH LENGTH = 2.03 HOPS

SOURCE: 66 COUNT: 893 DELAY: 371.48 isS.

PATH: 66=-30
COUNT: 849 DELAY: 336.34 95%

[

P PATH: 66-60-61-30
' COUNT: 44 DELAY:1049.60 5%

PERCENTAGE OF LOOPING PACKETS = 0.00%
AVERAGE PATH LENGTH = 1.10 HOPS

:éé TOTAL MESSAGES FROM ALL SOURCES = 1778
P PERCENT LOOPING PACKETS = 0.84%

- 151 -

i

Report No. 4088 , Bolt Beranek and Newman Inc.

e) For this experiment, we used the network pictured in Figure
A3-2. Nodes 60, 61, and 66 each sent 10 packets per second to
node 30.

g
ARPANET

p-.§

Figure A3-2

- 152 -

W e

Report No. 4088 ‘) Bolt Beranek and Newman Inc.

SOURCE: 60 COUNT: 1051 DELAY: 104,66 MS

PATH: 60-61-66=~30
COUNT: 60 DELAY: 148.91 6%

PATH: 60-66-30
COUNT: T19 DELAY: 72.19 68%

PATH: 60-61-30
COUNT: 196 DELAY: 138.25 19%

PATH: 60-41~60-66-30
COUNT: 3 DELAY: 364.89L00P 0%

PATH: 60-66-61-30
COUNT: 11 DELAY: 277.93 7%

PATH: 60-66-61-60-66-30
COUNT: 2 DELAY: 516.00LOCP 0%

PERCENTAGE OF LOOPING PACKETS = 0.48%
AVERAGE PATH LENGTH = 2.14 HOPS

SOURCE: 61 COUNT: 1034 DELAY: 77.34 MS.

PATH: 61-66-30
COUNT: 293 DELAY: 112.17 28%

PATH: 61-30
COUNT: T15 DELAY: 60.17 69%

PATH: 61-60-66-30
COUNT: 26 DELAY: 157.17 3%

PERCENTAGE OF LOOPING PACKETS = 0.00%
AVERAGE PATH LENGTH = 1.33 HCPS

- 153 -

F AT e N e o i et

Report No. 4088 _ Bolt Beranek and Newman Inc.
SQURCE: 66 COUNT: 1061 DELAY: 80.58 MS.
PATH: 66-=30
COUNT: 879 DELAY: 44.34 84y

PATH: 66-({" .30
VOUNT: 134 DELAY: 272.53

PATH: 66~61-60-66-30
COUNT: 3 DELAY: 514,13L0O0OP

PATH: 66-60-61-30
COUNT: 35 DELAY: 218.56
PERCENTAGE OF LOCPING PACKETS = 0.29%
AVERAGE PATH LENGTH = 1.20 HOPS

TOTAL MESSACGES FROM ALL SOURCES = 3136
PERCENT LOGCPING PACKETS = 0.2€%

- 154 -

13%

0%

3%

e e e A B b BT AT 4t X AT et SRS BT T T AL s v A Y TR e TR BT

R T R T e e e AT LT ST

Report No. 4088 . Bolt Beranek and Newman Inc.

APPENDIX 4 -~ INSTABILITY/OVERLOAD TESTS

This appendix contains the results of an experiment done on
2/27/79. Nodes 26, 38, and 17 each sent 10 packets per second to
node 19. PModes 13 and 53 each sent 20 packets per second to node
19. All packets were 1192 bits long. During this experiment,
the line between nodes 13 and 62 was removed from o;=ration. The
network, as it was during our experiments, is pictured in Figure

A4-1 .

- 155 -

l-hY SJdnpiy

sl

64 -2°W-2!
40 sv

///d]// . LANV Y ﬁw&
% llllll

Bolt Beranek and Newman Inec.

&
-~ 156 -

“SY QUVAIIS.K] .ty JHN
R0 QRGO kv SI0H

Report No. 14088

oo « S A D s B S by e A SRS R RS e S il A 01 o W WS ol b (e - © e

§
H
1
H
1
X
H
;
H
4
H
:
:
H

bovearmerd

 onrest

Report No. 4088

SQURCE: 13, COUNT: 3503 DELAY: 357.75 MS.

PATH: 13-17-19
COUNT: 2869 DELAY: 186.07 82%

PATH: 13-53~38-26-19
COUNT: 634 DELAY:1134.63 18%

PERCENTAGE OF LOOPING PACKETS = 0.00%
AVERAGE PATH LENGTH = 2.36 HOPS

SQURCE: 26 COUNT: 2084 DELAY: 219.85 MS.

PATH: 26-19
COUNT: 1950 DELAY: 121.12 94%

PATH: 26-38-53-13-17-19
COUNT: 130 DELAY:1690.02 6%

PATH: 26-38-26-19
COUNT: N DELAY: 567 .20L00P 0%

PERCENTAGE OF LOOPING PACKETS = 0.19%
AVERAGE PATH LENGTH = 1.25 HOPS

SOURCE: 17 COUNT: 2536 DELAY: 86.24 MS.

PATH: 17-19
COUNT: 2533 DELAY: 85.89 100%

PATH: 17-13-53-38-26-19
COUNT: 3 DELAY: 382.40 0%

PERCENTAGE OF LOOPING PACKETS = 0.G0%
AVERAGE PATH LENGTH = 1.00 HOPS

- 157 -

Bolt Beranek and Newman Inc.

Report No. 4088 _ Bolt Beranek and Newman Inc.

SQURCE: 53 COUNT: 3878 DELAY: 555.83 MsS.

PATH: 53-38-26-19
COUNT: 2630 DELAY: 471%.59 68%

PATH: 53-13-17-=19
COUNT: 1225 DELAY: 729.06 32%

PATH: 53-13-53-38-26-19
COUNT: 17 DELAY:1049.27L00OP 0%

PATH: 53-38-53-13-17-19
COUNT: 6 DELAY: 718.40L0OOP 0%

PERCENTAGE OF LOOPING PACKETS = 0.59%
AVERAGE PATH LENGTH = 3.01 HOPS

- 158 =~

D B TONTIRE e n O FEDT Tx TOTAS M ReR wm U I W T AT

S S i
ST T SROT IR o e

- R T i s eyt =

B

Rt
A ¥

R A D i e Fe
R ‘i;‘:f, ‘.M

i

R,

i

R
R 1{
eledits]

bk

R

Report No. 4088

SOURCE: 38

PATH: 38-53-13-17-~19
286 DELAY:1387.12

COUNT:

PATH: 38-26-19
COUNT:

COUNT: 1471

1178 DELAY: 297.89

Bolt Beranek and Newman Inc.

DELAY: 515.56 MS.

19%

80%

PATH: 38-26-38-53-13-17-19 |
DELAY: 373.60L0OOP 0%

COUNT:

PATH: 38-53-38-26-19

COUNT:

2

3 DELAY:1793.07LOOQP 0%

-

A

PATH: 38-53-13-53~38-26-19
DELAY:2315.20LQQP 0%

COUNT:

2

PERCENTAGE OF LOOPING PACKETS = 0.48%

AVERAGE PATH LENGTH = 2.40

HOPS

- 159 -

£y

TNt SRR AT S e ey e TR R R T T SN S T A A S ST TR 2
o AR L LA A R et e R A e e S ek L]

ko
e
o
e
» SRR P
e W

Report No. 4088) Bolt Beranek and Newman Inc.

APPENDIX 5 -~ MODERATE LOAD TESTS

This appendix contains the results of two experiments, one

performed on 3/1/79 and the second performed on 12/21/78.

a) For this experiment, nodes 38, 26, 13, and 17 each sent 20
packets per second to node 19. Each packet contained 1112 bits.
Only the data from nodes 38 and 17 are shown here. During this
experiment, the line between nodes 13 and 62 was removed from

operation. The network is pictured in Figure Al-1.

SOURCE: 17 COUNT: 2437 DELAY: 35.60 MS.
PATH: 17-19
COUNT: 2437 DELAY: 35.60 100%

PERCENTAGE OF LOOPING PACKETS = 0.00%
AVERAGE PATH LENGTH = 1.00 HOPS

SOURCE: 38 COUNT: 2481 DELAY: 55.50 MS.

PATH: 38-26-19
COUNT: 2481 DELAY: 55.50 100%

PERCENTAGE OF LOOPING PACKETS = 0.00%
AVERAGE PATH LENGTH = 2.00 HOPS

TOTAL MESSAGES FROM ALL SOURCES = 4919
PERCENT LOOPING PACKETS = 0.00%

- 160 -

—

Report No. 4088 _ Bolt Beranek and Newman Inc.

o s

b) For this experiment, each of nodes 2, 16, 21, 34, 45, and 51

-

- sent approximately 2.5 packets per second to node 15. Each packet
contained 1192 bits.

SOURCE: 2 COUNT: 937 DELAY: 45.52 MS.

< PATH: 2-51-16=15

COUNT: 937 DELAY: U45.52 100%

e PERCENTAGE OF LOOPING PACKETS = 0,00%
AVERAGE PATH LENGTH = 3.00 HOPS

SQURCE: 16 COUNT: 949 DELAY: 7.13 MS.

PATH: 16-15
COUNT: 949 DELAY: T.13 100%

PERCENTAGE OF LOOPING PACKETS = 0.00%
AVERAGE PATH LENGTH = 1.00 HOPS

SOURCE: 21 COUNT: 937 DELAY: T73.77 MS.

: PATH: 21- 2-51-16-15
i COUNT: 453 DELAY: T71.27 48%

L PATH: 21-34-45-15
COUNT: 484 DELAY: T76.12 52%

%éz PERCENTAGE OF LOOPING PACKETS = 0.00%
AVERAGE PATH LENGTH = 3.48 HOPS

- 161 -

Aol

sty
B SR A

Ly
2ok

et

Report No. 4088 , Bolt Beranek and Newman Inc.

SOURCE: 34 COUNT: 938 DELAY: 48.94 MsS.

PATH: 34-45-15
COUNT: 938 DELAY: 48.94 100%

PERCENTAGE OF LOOPING PACKETS = 0.00%
AVERAGE PATH LENGT" = 2.00 HOPS

SOURCE: U5 COUNT: 945 DELAY: 23.27 MS.

PATH: U45-15
COUNT: 945 DELAY: 23.27 100%

PERCENTAGE OF LOOPING PACKETS = 0.00%
AVERAGE PATH LENGTH = 1.00 HOPS

SOURCE: 51 COUNT: 941 DELAY: 33.66 MS.

PATH: 51-16-15
COUNT: 91 DELAY: 33.66 100%

PERCENTAGE OF LOOPING PACKETS = 0.00%
AVERAGE PATH LENGTH = 2.00 HOPS

TOTAL MESSAGES FROM ALL SOURCES = 5647
PERCENT LOOPING PACKETS = 0.00%

- 162 =~

